
Bisimulation Prioritized Experience Replay: Enhancing

Online Reinforcement Learning through Bisimulation

Behavioral-Based Priorities

by

Oscar Guarnizo

Student ID: 2575296

Supervisor: Mirco Giacobbe, Ph.D.

Co-Supervisor: Leandro Stella, Ph.D.

School of Computer Science

College of Engineering and Physical Sciences

University of Birmingham

2023-24

Abstract

Prioritized Experience Replay has been an effective traditional solution for value-based re-
inforcement learning algorithms to efficiently address non-stationary and correlated data
issues. However, standard prioritization often overlooks the nuanced, task-specific behav-
iors of states, leading to a ”task-agnostic” sampling problem. This work introduces a
novel non-uniform sampling approach, named Bisimulation Prioritized Experience Replay
(BPER), by incorporating a surrogate on-policy bisimulation metric into the experience
replay prioritization process. This metric allows us to measure behavioral similarities
and diversify the training data, aiming to enhance learning by focusing on behaviorally
relevant transitions. Specifically, our method utilizes a Matching under Independent Cou-
plings (MICo) metric, a more general surrogate metric learned through state abstractions.
The proposed method balances conventional TD-error-based and bisimulation-based pri-
oritization by reweighting priorities with an introduced hyperparameter, and two possible
strategies to assigning priorities. The method demonstrates superior performance in a 31-
state Grid World and shows promising results in classical pixel-based environments. The
31-state Grid World empirically validates the proof of concept by efficiently achieving to
1) emphasize behavioral relevant transition, thereby avoiding task-agnostic sampling, 2)
alleviate the outdated priorities by having a better tendency to constant fixed priorities,
and 3) mitigate the insufficient sample space coverage, increasing the data diversity.

ii

Acknowledgements

Foremost, I would like to express my sincere gratitude to my principal advisor, Mirco
Giacobbe, Ph.D., and my co-advisor, Leonardo Stella, Ph.D., for their continuous support
of my research, as well as their patience, responsibility, motivation, and enthusiasm.

Equally important, I would like to thank Dr. Pablo Samuel Castro, the author of the
MICo paper, for his invaluable advice and guidance, which helped me to better understand
the topic. I truly appreciate your prompt responses to my questions and your enthusiasm
in explaining your work to me. I hope to collaborate with you on future projects.

I would also like to thank my friends and colleagues who offered ideas and comments
about my project. In particular, I want to highlight the observations of Fernando Zhapa,
Anthony Ramos, Jose Seraquive, and Joseph Gonzalez, which were instrumental in shaping
this project.

A special thank you goes to my dear friend Yu Wen (黃郁雯), who accompanied me
every day in the library throughout the entire journey of this thesis. Thank you for feeding
me and cheering me up with your weird situations (like losing a laptop). Without a doubt,
you made this thesis a more enjoyable and pleasant experience, and I am deeply grateful
for your company.

Last but not least, I would like to express my heartfelt thanks to my family, who always
motivated and supported me throughout this master’s journey. I am particularly grateful
to my parents, Elizabeth and Vicente, for their constant calls and for taking the time to
talk to me during both challenging and happy moments. I also thank my sisters, Evelyn
and Ericka, for their frequent video calls filled with stories that lifted my spirits and kept
me moving forward. Without their unwavering support, I would not have successfully
completed this stage of my life.

iii

Abbreviations

RL Reinforcement Learning
BPER Bisimulation Prioritized Experience Replay
BPERcn Bisimulation Prioritized Experience Replay with strategy current-vs-next
BPERaa Bisimulation Prioritized Experience Replay with strategy all-vs-all
PER Prioritized Experience Replay
TD-error Temporal Difference Error
MICo Matching under Independent Couplings
ELP Expected Learning Progress
DQN Deep Q-Network
SAC Soft Actor-Critic

iv

Contents

Abstract ii

Acknowledgements iii

Abbreviations iv

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Contributions . 2
1.2 Document Structure . 3
1.3 Legal, Social, Ethical and Professional Issues 3

2 Background 5
2.1 Reinforcement Learning . 5

2.1.1 Markov Decision Process . 6
2.1.2 Trajectories, Return, and Value Functions 7
2.1.3 Deep Q-Learning (DQN) . 8
2.1.4 Prioritized Experience Replay . 11

2.2 Bisimulation . 12
2.2.1 Bisimulation in a Markov Decision Process 13
2.2.2 On-policy bisimulation . 13
2.2.3 On-policy Bisimulation metric . 14
2.2.4 Couplings and Kantorovich . 15
2.2.5 Matching under Independent Couplings (MICO) metric 16

v

3 Literature Review 18
3.1 Non-Uniform Sampling Experience Replays 18

3.1.1 Priority Substitution . 18
3.1.2 Priority Reweighting . 19
3.1.3 Auxiliary Mechanism . 20

3.2 Learning State Abstractions . 21
3.2.1 Reconstructions Abstractions . 21
3.2.2 Contrastive Abstractions . 22
3.2.3 Behavioral Abstractions . 22

4 Methodology 24
4.1 A Motivating Example: Grid World . 24

4.1.1 Bisimulation in a Grid World . 25
4.1.2 On-policy Bisimulation in a Grid World 26
4.1.3 On-policy Bisimulation Metric in a Grid World 26

4.2 Bisimulation Prioritized Experience Replay 29
4.2.1 Learning State Abstractions . 29
4.2.2 Priority Strategies . 32

5 Experimental Setup 35

6 Results and Discussion 38
6.1 Episode Reward in Grid World . 38
6.2 Task-agnostic Sampling . 40

6.2.1 Visual Inspection . 41
6.3 Outdated Priorities . 43
6.4 State Space Coverage . 44
6.5 Classical Environments . 45

6.5.1 Mean Batch Priority . 48
6.6 Summary Discussion . 49

7 Conclusion and Future Work 52
7.1 Conclusion . 52
7.2 Future Work . 53

A Appendices 59
A.1 Metrics . 59
A.2 Algorithm: DQN with Matching under Independent Couplings (MICo) . . . 60
A.3 Distance between Priority Sampling Distributions 61
A.4 Hyperparameters Setting . 62
A.5 Visual Inspection 50k Time Step . 65
A.6 Priority Weight Sweep Results . 65
A.7 Mountain Car and CartPole with Priority Weight 1.0 65
A.8 Validation Episode Reward . 66

A.9 Episode Reward Gain baseline DQN + MICO 67

List of Figures

2.1 Reinforcement Learning Loop . 5
2.2 Markov Decision Process . 6

4.1 Bisimulation in Grid World . 25
4.2 Bisimulation Collapse and On-Policy Bisimulation 26
4.3 Recursive On-policy Bisimulation Operator 27
4.4 Multidimensional Scaling of On-policy Bisimulation Distances 28
4.5 Bisimulation Prioritization Strategies . 28
4.6 MICo Latent Space . 30
4.7 MICo Learning . 31
4.8 Illustration of the squarify method . 31

6.1 Episode and Cumulative Reward in Grid World 39
6.2 Episode Reward Gain in Grid World . 39
6.3 Exact On-policy Bisimulation Distributions 40
6.4 Priority Distributions. 41
6.5 Visual Inspection . 42
6.6 Sampling Distributions Distances . 43
6.7 Visitation Distributions . 44
6.8 Visitation Entropy . 45
6.9 Episode Reward in Classical Environments 46
6.10 Episode Reward Gain in Classical Environments 47
6.11 Log Mean Batch Priority . 49

A.1 Visual Inspection at the 50k time step . 64
A.2 Priority Weight Sweep in Grid World . 65
A.3 Episode Reward in Classical Environments using Priority Weight 1.0 65
A.4 Validation Episode Reward in Classical Environments 66

viii

A.5 Episode Reward Gain in Classical Environments against DQN MICO baseline 67

List of Tables

6.1 Episode Reward Gain Comparison of Different DQN Variants 48

A.1 Hyperparameter Configurations for Grid World 62
A.2 Hyperparameter Configurations for Other Environments 63

x

CHAPTER 1

Introduction

Incorporating deep learning techniques into Reinforcement Learning (RL) frameworks
has been challenging due disparity in data assumptions between deep learning and RL
algorithms [40]. Traditional deep learning relies on the independence of data samples for
effective neural network training, whereas RL is characterized by a temporal sequential
process that results in highly correlated states. Moreover, the data distribution in RL
is non-stationary; it evolves as the algorithm acquires new behaviors. This dynamism
leads to instability when deep learning techniques are applied to RL algorithms.

Experience Replay (ER) has been implemented in online RL algorithms, such as DQN
[40], DDPG [33], SAC [21] to address both data correlation and non-stationary distri-
butions issues. Essentially, an ER functions as a database where experience tuples2 are
stored, allowing training to occur on minibatches sampled from this experience buffer. This
simple mechanism facilitates breaking temporal data correlations, leading to approximate
independent and identically distributed (iid) data distributions.

While ER benefits online RL, significant iterations may still be required for conver-
gence. Schaul et al. [44] note that a DQN algorithm revisits the same experience tuple
an average of eight times, not all of which lead to significant improvements. In conse-
quence, they proposed a Prioritized Experience Replay (PER), assigning probabilities to
each experience based on the Temporal Difference (TD) error [47]. The TD-error priority
works as an indicator of the Expected Learning Progress (ELP) [44]1; encouraging
more frequently replay experiences which lead to higher improvements. However, this
prioritization can face several issues, such as task-agnostic sampling, outdated priorities,
and insufficient state space coverage.

Prioritizing purely on TD-error can overlook the task-specific behaviors of states, lead-

2An experience tuple consists of (state st, action at, reward Rt, next state st+1)
1According to Schaul et al. [44], the Expected Learning Progress (ELP) is the idealised criterion

to assign a priority value with the amount the RL agent can learn from a transition in its current state.

1

1. Introduction

ing to what we term as task-agnostic sampling problem, similar to representation learn-
ing findings in [53]. From this perspective, PER fails to recognize that certain states in a
Markov Decision Process (MDP), despite being structural dissimilar, can exhibit similar
long-term behaviors (w.r.t. the RL downstream task), resulting in similar expected returns
in the long run. In other words, it fails to recognize that some states can be behavioral
similar. The outdated priorities limitation, in the other hand, arises from practical
implementation issues. According to Theorem 1 in Pan Y. et al. [43], priorities should be
updated over all experiences in the replay buffer using updated training parameters at each
time step in order to obtain a faster convergence rate. However, this approach is impracti-
cal due to the large replay buffer capacity, which imposes a high computational cost when
updating all priorities during each learning iteration. PER [44] methods update only the
priorities of experiences from a sampled mini-batch, leaving others unchanged, resulting in
inaccurate sampling distributions. Indeed, PER is quite restrictive because priorities are
calculated only from experience tuples already visited and stored in the experience buffer,
representing just a small subset of the entire state space. This exploration issue, called
insufficient sample space coverage, has been highlighted by other sources [15, 43].
Lack of sample space coverage can lead to data imbalance issues, when during learning
the experiences are unevenly distributed in the state space [12], producing high correlated
transitions due to high levels of correlation between the data-generating distribution (the
experience replay) and the current evaluated policy [15], tending to an on-policy updating
behavior.

Bisimulation metrics [16, 17, 18, 9] provides a means of quantifying the behavioral
similarity between states by considering the immediate rewards along with how states
transition under a given MDP. Leveraging this behavioral concept aims to prioritize more
informative tuples in the experience replay by identifying state pairs with significant be-
havioral differences, as they often correspond to more ’surprising’ transitions, leading to
more effective improvements. Using bisimulation metrics also alleviates outdated priorities
by providing more realistic long-term behavior definitions. Although bisimulation-based
priorities will be still updated in the sampled mini-batch, the behavioral-based bisimula-
tion metrics theoretically rely on a dynamic programming operator (commonly used in
RL, such as the value iteration algorithm [47]), which is proven to converge to a fixed point
where the distance metric remains constant [9, 10]. Unlike TD-error, this provides a more
realistic and stable definition of priority in the long term, alleviating the outdated prior-
ities. Additionally, prioritizing behavioral dissimilar states encourages data diversity and
exploration, tackling the insufficient sample space coverage problem. Specifically, learning
state abstractions with a bisimulation metric organizes latent codes in a latent space based
on behavior, inducing large state space coverage of behavioral dissimilar states.

1.1 Contributions

In this work, we propose incorporate a bisimulation metric as priority in a prioritized
experience replay by learning state abstractions. We explored the on-policy bisimulation
metric proposed by Castro [9], which specifically emphasizes the dynamics of the Markov

2

1. Introduction

Chain induced by the current policy. Specifically, we used a surrogate on-policy bisim-
ulation metric called Matching under Independent Couplings (MICO) [10] metric, which
works more efficiently under both discrete and stochastic environments and is obtained as
part of the learning of state abstractions. According to [53] and [10], the calculation of
a bisimulation metric (or surrogate) in an online manner as part of the learning of state
abstractions is a more effective way to obtain this metric. Our Bisimulation Prioritized
Experience Replay (BPER) aims to 1) emphasize behaviorally relevant transitions, thereby
avoiding task-agnostic experience sampling, 2) alleviate the outdated priorities by having
a better tendency to constant fixed priorities, and 3) mitigate the insufficient sample space
coverage by encouraging the sampling of behavioral dissimilar states, increasing the data
diversity.

1.2 Document Structure

This thesis is organized into several chapters that should generally be read sequentially.
We recognize that there are two essential areas of background knowledge required to fully
understand this work: the foundations of RL and Bisimulation. We strongly encourage
readers to first read the background (Section 2) to gain a comprehensive understanding
of the methodology. However, certain sections may be skipped depending on the reader’s
familiarity and specific interests:

• Readers already familiar with reinforcement learning may choose to skip Section 2.1.

• For a quick understanding of the methodology, we suggest reviewing the Introduc-
tion (Section 1) and the Bisimulation Prioritized Experience Replay (Section 4.2),
while skipping the Motivating Example (Section 4.1), which relies heavily on the
background material.

• For those interested in potential extensions of this work, we recommend focusing
on the Introduction (Section 1) and then proceeding directly to the Conclusion and
Future Work (Section 7) to grasp the current state of the research.

1.3 Legal, Social, Ethical and Professional Issues

• Legal. The proposed method utilizes data that is openly accessible from reinforce-
ment learning environments available in Gymnasium. For the development of the
custom Grid World, we used and modified the open-source code provided by the
Farama-Foundation/gym-examples. To replicate the MICo learning approach, we
retrieved the openly available code from Google Research. All datasets in this repos-
itory are released under the CC BY 4.0 International license, which can be reviewed
here, while the source files are licensed under the Apache 2.0 license. For the re-
production of the DQN algorithm, we employed the state-of-the-art implementation
provided by the TorchRL repository, licensed under the MIT License. All necessary
acknowledgments and citations have been duly provided.

3

https://gymnasium.farama.org/
https://github.com/Farama-Foundation/gym-examples/blob/main/gym_examples/envs/grid_world.py
https://github.com/google-research/google-research/tree/master/mico
https://creativecommons.org/licenses/by/4.0/legalcode
https://github.com/pytorch/rl/tree/main/sota-implementations/dqn

1. Introduction

• Social. The present work, in its current research state, does not produce any social
bias. However, if applied to real-world scenarios, such as autonomous vehicles or
healthcare decision systems, there is a need to ensure that the algorithms do not
reinforce existing biases or result in unintended consequences that could adversely
affect certain social groups.

• Ethical. The present work, in its current research state, does not produce any
ethical bias. However, if applied to real-world scenarios, such as surveillance sys-
tems, there is a need to continually assess whether these approaches unintentionally
disadvantage certain outcomes or populations.

• Professional Issues. The present work follows guidelines suggested in professional
and academic sectors, such as the British Computer Society (BCS) Code of Con-
duct, the ACM and IEEE. This includes maintaining integrity, competence, and
responsibility in the development and implementation of RL methods.

4

CHAPTER 2

Background

2.1 Reinforcement Learning

Reinforcement Learning (RL) [47] is one of the three main paradigms in machine learning,
alongside supervised and unsupervised learning. What distinguishes RL from other ap-
proaches is that the learning involves a trial-and-error process in which an agent interacts
with an environment to maximize long-term rewards. The agent iteratively observes the
current state of the environment, takes an action, and receives a reward signal (positive
or negative), along with the next state (see Figure 2.1). The primary objective of the RL
agent is to maximize the cumulative reward, or return. In this section, we will formally
define these concepts.

Figure 2.1: Reinforcement Learning Loop. The agent iteratively interacts with the environ-
ment by taking action at based on state st and receiving reward rt and next state st+1.

5

2. Background

2.1.1 Markov Decision Process

Markov Decision Processes (MDP) provide the formal framework upon which most
RL algorithms are built. A finite MDP is an state transition system defined as a 5-tuple
M = ⟨S,A,P,R, γ⟩, where

• S is a finite set of states,

• A is a finite set of actions,

• P : S × A → P(S) is a transition kernel, where P(S) is the set of probability
distributions on S, and P (s′|s, a) is the probability of transitioning from state s to
state s′,

• R : S ×A → R is the reward function,

• and γ ∈ [0, 1) is a discount factor.

For reference, a MDP can be visualized as a graph, as shown in Figure 2.2, where the
interaction between all components is illustrated. A MDP intuitively could be understood
as the environment, while the agent decision-making mechanism is defined by a policy,
which induces a Markov Chain on top of a MDP.

Figure 2.2: Markov Decision Process. MDP elements: states, actions, rewards, and a policy
determining decisions. The bottom part shows a trajectory generated by the current policy.

6

2. Background

A policy π ∈ P(A)S describes the agent actions in a given state. A stochastic policy
is a mapping from states to distributions over actions

at ∼ π(·|st) (2.1)

, while a deterministic policy is a direct mapping from states to actions

at = π(st) (2.2)

2.1.2 Trajectories, Return, and Value Functions

The iterative interaction of an agent in the environment (see Figure 2.2) is depicted in a
trajectory1 (also called rollout or episode), which is a sequence of states and actions.

τ = (s0, a0, s1, a1, . . .)

where a transition is what happen between state st and state st+1, in a deterministic
transition as

st+1 = f(st, at)

, or a stochastic transition
st+1 ∼ P (·|st, at)

, where the action come from the policy.
The reward function R in the current work depends only on the current state and

action taken, such that
rt = R(st, at)

The return R(τ) is defined as the cumulative reward over a trajectory. It can be
represented as a finite-horizon undiscounted return, which is the sum of rewards
obtained within a fixed window of steps:

R(τ) =
T∑
t=0

rt

, or as the infinite-horizon discounted return, which is the sum of all rewards ever
obtained by the agent, but discounted by how far in the future they’re obtained. This
formulation of return includes a discount factor γ ∈ (0, 1), which provide better theoretical
convergence guarantees:

R(τ) =

∞∑
t=0

γtrt

In RL, any agent aims to obtain an optimal policy π∗ that maximizes the expected
return when the agent acts according to it.

1The trajectory, return and value functions explanations were based on OpenAI Spinning Up

7

https://spinningup.openai.com/en/latest/spinningup/rl_intro.html

2. Background

π∗ = argmax
π

E
τ∼π

[R(τ)] (2.3)

To achieve this goal, in many cases such as with DQN (as we will discuss later), it
is necessary to have a notion of the value of a state or state-action pair. The value is
defined as the expected return when starting from that state or state-action pair and then
following a particular policy indefinitely. Below are some key concepts related to value
functions retrieved from [3]:

• The On-policy Value Function gives the expected return if you start in state s
and always act according to policy π:

V π(s) = E
τ∼π

[R(τ |s0 = s)] (2.4)

• The On-Policy Action-Value Function, Qπ(s, a), which gives the expected return
if you start in state s, take an arbitrary action a (which may not have come from
the policy), and then forever after act according to policy π:

Qπ(s, a) = E
τ∼π

[R(τ) |s0 = s, a0 = a] (2.5)

• The Optimal Value Function, V ∗(s), which gives the expected return if you start
in state s and always act according to the optimal policy in the environment:

V ∗(s) = max
π

E
τ∼π

[R(τ) |s0 = s] (2.6)

• The Optimal Action-Value Function, Q∗(s, a), which gives the expected return
if you start in state s, take an arbitrary action a, and then forever after act according
to the optimal policy in the environment:

Q∗(s, a) = max
π

E
τ∼π

[R(τ) |s0 = s, a0 = a] (2.7)

2.1.3 Deep Q-Learning (DQN)

The Deep Q-Learning (DQN) [40, 41] algorithm introduced a novel approach to train Q-
learning algorithms using neural networks in high-dimensional, partially observable state
spaces (e.g., raw pixels). It effectively addresses two important challenges in training deep
neural networks for RL, such as highly-correlated states and non-stationary distribution
issues. To address both issues, DQN introduced a experience replay mechanism, which
facilitates breaking temporal data correlations, leading to approximate independent and
identically distributed (iid) data distributions.

Experience Replay (ER) functions as a dataset with a fixed capacity N , storing
tuples of experiences from the agent’s interactions with the environment at different time
steps during training, represented as

et = (st, at, rt, st+1), et ∈ E

8

2. Background

During training, mini-batches are randomly sampled from the experience replay to
train a neural network Qθ, which is tasked with approximating the optimal state-action
value function Q∗. In fact, DQN learning aims to estimate this optimal state-action value
function, such that the optimal policy2 is

π∗(s) = arg max
a

Q∗(s, a) (2.8)

To estimate the Q-value function, the DQN algorithm relies on a loss function derived
from the Bellman equations [47], which state that the value of a state is the reward you
expect to receive from that state, plus the value of the subsequent state you transition to.

Q∗(s, a) = E
s′∼P (·|s,a)

[
rt + γmax

a′
Q∗(s′, a′)

]
.

As we aim to approximate Q(s, a; θ) ≈ Q∗(s, a), a Q-network is trained to reduce
the mean-square error in the Bellman equation by minimizing a sequence of loss function
Li(θi) that changes at each iteration i

Li(θi) = E
et∼E

[
(yi −Q(st, at; θi))

2
]

= E
(st,at,rt,st+1)∼E

[
(rt + γmax

a′
Q(st+1, a

′; θ−i)−Q(st, at; θi))
2

]
where the optimal targets rt + γmaxa′ Q

∗(s′, a′) are substituted with approximated
target values for iteration i

yi = rt + γmax
a′

Q(st+1, a
′; θ−i) (2.9)

, and the gradients respect to the parameters θi are

∇θiL(θi) = E
(st,at,rt,st+1)∼E

[δt∇θiQ(st, at; θi)] (2.10)

where the temporal difference error (or td-error) for the ei experience tuple corre-
sponds to

δi = rt + γmax
a′

Q(st+1, a
′; θ−i)−Q(st, at; θi) (2.11)

Several important considerations should be taken into account when using this loss
function in practice.

• The parameters θ−i corresponds to a separated copy of the q-network parameters
that is updated with θi every C gradient descent steps to stabilize the training.

2Notice that by definition Q∗(s, a) in Equation 2.7 represents the expected return for starting in state
s, taking an arbitrary action a, and then following the optimal policy forever after. Therefore, by selecting
the action with the maximum Q-value, we obtain the optimal policy that maximizes the expected return,
same as the main RL goal in Equation 2.3.

9

2. Background

• Although the algorithm approximates the greedy policy in Equation 2.8, it learns
this strategy by using a behavioral ϵ-greedy policy, which encourages exploration
by taking a random action with probability ϵ during training

πϵ(a|s) =

{
a ∼ Uniform(A) with probability ϵ

arg maxaQ(s, a; θ) with probability 1− ϵ
(2.12)

Typically, this epsilon value is annealed over iterations to maintain a small value as
learning approaches convergence.

• When learning from pixels, multiple frames n are typically stacked together to
represent a state in a preprocessing step. Additionally, the same action can be
repeated over the n stacked frames using a method called skip frames to reduce the
training load. Thus, a state will be represented by st = ϕ({xt−n, xt−(n−1), · · · , xt}),
where the function ϕ stacks a window of n frames (commonly n = 4) while repeating
the same action. For simplicity, we will refer to states in the algorithm and not the
preprocessing function, but it is important to remind the reader that stacking and
skip frames are used in a preprocessing step.

Algorithm 1 presents the pseudo-code for the DQN algorithm, modified slightly from
the version in Mnih et al. [40, 41] to run for a fixed total budget of T (the total number
of steps during the entire training), rather than running it per episode. This facilitates
easier and fair comparisons with other extensions of the algorithm.

Algorithm 1 Deep Q-learning with Experience Replay (Mnih et al. [40, 41])

1: Input: minibatch k, step-size η, replay period K and size N , budget T (total steps).
2: Initialize action-value function Q with random weights θ
3: Initialize target action-value function Q− with weights θ− = θ
4: Initialize replay memory D = ∅ with capacity N
5: for t = 1 to T do
6: Observe st
7: Choose action at ∼ πϵθ(st)
8: Execute action at and observe rt and st+1

9: Store transition (st, at, rt, st+1) in D
10: Sample minibatch B ∼ Uniform(D) of transitions ej

11: Set yj =

{
rj for terminal sj+1

rj + γmaxa′ Q
−(sj+1, a

′; θ−) otherwise

12: Compute TD-error δj = yj −Q(sj , aj ; θ), and TD-loss LTD = δ2j
13: Perform a gradient descent step on LTD

14: Every C optimizing steps update θ− ← θ
15: end for

10

2. Background

2.1.4 Prioritized Experience Replay

Schaul et al. [44] explored the limitations of the ER and discovered that a DQN algo-
rithm revisits the same experience tuple an average of eight times, with not all revisits
leading to significant improvements. As a result, they proposed Prioritized Experience
Replay (PER), which non-uniformly samples experiences from the replay buffer based on
a priority measure. While they left room for exploring other potential priority measures,
they hypothesized that TD-error could serve as an indicator of expected learning progress.
According to Schaul et al. [44], the Expected Learning Progress (ELP) is the ide-
alised criterion to assign a priority value with the amount the RL agent can learn from
a transition in its current state. By using TD-error as a priority measure, they aimed to
more frequently replay experiences that are likely to result in those greater improvements.

Specifically, the sampling probability P (i) of an experience tuple ei is defined as

P (i) =
pαi∑
k p

α
k

(2.13)

where α controls the degree of prioritization, with α = 0 the uniform case, and pi is
the priority of an experience tuple ei. Then, a proportional prioritization3 assigns the
priority as

pi = |δi|+ ϵ (2.14)

where ϵ is used to revised experiences even when td-error equal zero. This strategy
uses a ’sum-tree’ data structure to sample efficiently from a large experience buffer without
depending on the buffer capacity N .

The prioritized method, however, introduces a bias in the estimation of the Q-values.
As the algorithm prioritize certain experiences over others, they will be sampled more fre-
quently than what normally occur; skewing the distribution of experiences. This skewness
does not correspond to the actual distribution of experiences encountered in the environ-
ment (the true distribution), leading to biased Q-value estimates. To address this issue,
Schaul et al. [44] introduced a weighted Importance Sampling [39] to adjust the con-
tribution of each sampled experience in the update step, compensating for the fact that
some experiences were over-sampled (and therefore should be down-weighted) while others
were under-sampled (and therefore should be up-weighted). The weight per experience is
defined as

wi =

(
1

N
· 1

P (i)

)β
(2.15)

, where N is the buffer capacity, and β is an hyperparameter to adjust the importance
sampling, which in practice is annealed from an initial value β0 to 1. Additionally, this
weight is normalized by the maximal weight 1

maxk wk
to stabilize the learning by reducing

very large updates (only scaling downwards). Then, the weighted gradient is defined as

∇θiL(θi) = E
(st,at,rt,st+1)∼E

[wiδt∇θiQ(st, at; θi)] (2.16)

3An alternative ranked-based prioritization, defined as pi = 1
rank(i)

, was also evaluated, where

the rank(i) represents the index of the experience in the buffer sorted according the TD-error |δi|. This
strategy employs a piece-wise linear function with k segments to enhance sampling efficiency

11

2. Background

Algorithm 2 presents the pseudo-code for the DQN algorithm including the PER ex-
tension. It is important to note that, for practical reasons, priorities are updated only for
the transitions in the current sampled mini-batch, as it would be computationally inef-
ficient to update the entire replay buffer, especially when it is large. Additionally, new
transitions added to the experience replay are assigned with a maximum priority to ensure
that all experiences are sampled at least once.

Algorithm 2 DQN with Prioritized Experience Replay (PER) (Schaul et al. [44])

1: Input: minibatch k, step-size η, replay period K and size N , exponents α and β,
budget T (total steps).

2: Initialize action-value function Q with random weights θ
3: Initialize target action-value function Q− with weights θ− = θ
4: Initialize replay memory D = ∅ with capacity N , p1 = 1 (inital priority)
5: for t = 1 to T do
6: Observe st
7: Choose action at ∼ πϵθ(st)
8: Execute action at and observe rt and st+1

9: Store transition (st, at, rt, st+1) in D with maximal priority pt = maxi<t pi
10: if t ≡ 0 mod K then
11: Sample minibatch B of transitions ej with probability P (j) =

pαj∑
i p

α
i

12: Compute importance-sampling weight wj = (N · P (j))−β /maxiwi

13: Set yj =

{
rj for terminal sj+1

rj + γmaxa′ Q
−(sj+1, a

′; θ−) otherwise

14: Compute TD-error δj = yj −Q(sj , aj ; θ), and TD-loss LTD = δ2j
15: Perform a gradient descent step on LTD, weighting the updates by wj
16: Update transition priority pj ← |δj |
17: Every C optimizing steps update θ− ← θ
18: end if
19: end for

2.2 Bisimulation

Bisimulation, a concept of behavioral similarity, is central to this work. In the following
sections, we will outline the key definitions of bisimulation that form the basis of our
approach. For convenience, we reused the notation from [10] that is used interchangeable
from now on. The next-state distribution for a given state-action pair (s, a) is defined as,

P as = P (·|s, a) ∈ P(S)

, and the associated immediate reward

ras = rt = R(s, a)

12

2. Background

Note not get confused with P as ̸= P (s′|s, a), the former represents a distribution and the
second one a probability value.

2.2.1 Bisimulation in a Markov Decision Process

Initially introduced in the field of concurrency theory, bisimulation [32, 1, 7] is an equiva-
lence relation between states of a transition system (e.g. MDP) that preserves the branch-
ing structure of the system, and which thus can simulate each other in a stepwise manner.
Two states are bisimilar if they can simulate each other’s behavior, thereby a bisimulation
serves as a form of state abstraction that groups states x, y ∈ S that are ’behaviorally
equivalent’.

Definition 1 (Bisimulation relation, Givan et al. [19]). Given an MDP M , an equivalence
relation E between states is a bisimulation relation if, for all states x, y ∈ S that are
equivalent under E the following conditions hold:

rax = ray (2.17)

P ax (C) = P ay (C) ∀a ∈ A, ∀C ∈ SE , (2.18)

where SE is the partition of S under the relation E, and P ax (C) =
∑

x′∈C P
a
x (x′).

Two states x, y ∈ S are bisimilar if there exists a bisimulation relation E such that
(x, y) ∈ E; consequently, their optimal value functions are equal, V ∗(x) = V ∗(y)4.

The properties in Equations 2.17 and 2.18 are referred to as Reward Equivalence
and Transition Equivalence, respectively. There can be various equivalence relations
that satisfy these conditions, but in most cases, we are interested in the largest equivalence
relation, denoted by ∼ 5.

Intuitively, a bisimulation of a transition system allows us to replace a complex system
with a simpler system that has fewer states while still capturing the same behavior as the
original.

2.2.2 On-policy bisimulation

The strong behavioral guarantees of the aforementioned bisimulation relation can poten-
tially hinder their applicability for RL algorithms. This is because they strictly require
exact action matching between states, which can be highly challenging to achieve in
complex environments (as it will be illustrated in detail later with an example in Section
4.1). For example, there may be actions that do not lead to positive outcomes, but the
equivalence conditions will still require proper matching between them. In other cases,
even when states exhibit similar optimal values, V ∗(x) = V ∗(y), they may not satisfy the
equivalence properties.

4Note that the converse does not hold; that is, even if V ∗(x) = V ∗(y), it does not necessarily imply
that the states x and y are bisimilar according to this definition

5The smallest bisimulation relation is the identity relation, which is a trivial solution where each equiv-
alence class contains only a single state.

13

2. Background

Under these circumstances, Castro’s work [9] proposes an on-policy bisimulation
relation, which, instead of looking to all actions matching, focus only on the current policy
actions. This approach aligns better with what RL algorithm does, where commonly is
of interest to keep a behavioral current policy which is updated iteratively as the learning
progress; allowing to focus over time only on the transitions of interest.

Definition 2 (On-policy Bisimulation Relation, Castro [9]). Given an MDP M , an equiv-
alence relation Eπ between states is a π-bisimulation relation if, for all states x, y ∈ S
that are equivalent under Eπ the following conditions hold:

rπx = rπy (2.19)

Pπx (C) = Pπy (C) ∀C ∈ SEπ , (2.20)

where SEπ is the partition of S under the relation Eπ, and

rπx :=
∑
a

π(a | x)rax

∀C ∈ SEπ ,Pπx (C) :=
∑
a

π(a | x)
∑
x′∈C

P ax (x′)
(2.21)

Two states x, y ∈ S are π-bisimilar if there exists a π-bisimulation relation Eπ such
that (x, y) ∈ Eπ; consequently, their on-policy value functions are equal, V π(x) = V π(y).
Denoting the largest bisimulation relation as ∼π.

Notice that both reward and transition equivalence now only account for one action a,
which is the action sampled from the policy π. This action could come from an stochastic
or deterministic policy.

2.2.3 On-policy Bisimulation metric

The direct use of bisimulation relations is generally problematic because these relations
are highly sensitive to infinitesimal variations in the reward function and environmental
dynamics (transitions), which often arise from data-driven estimations. As a result, it is
highly unlikely to exactly satisfy reward and transition equivalence in practice. Bisim-
ulation metrics [16, 17, 18, 9] have been proposed to address this issue and provide
a smoother notion of similarity than that offered by strict equivalence relations. These
metrics are defined within a pseudometric space6 on S

M(S) = {d ∈ [0,∞)S×S : d symmetric and satisfies the triangle inequality} (2.22)

, where a distance function d : S × S → R≥0 quantifies the ’behavioral similarity’
between two states. Accordingly, it is said that a pseudometric d ∈ M induces an equiv-
alence relation Ed := {(x, y)|d(x, y) = 0}. In other terms, any two states with distance 0
will be collapsed onto the same equivalence class.

6Notice a pseudometric has a weaker ”identity of indiscernibles” axiom x = y =⇒ d(x, y) = 0, which
permits cases where two states, x and y, may be behavioral distinct yet still have a distance of 0. Please
refer to Appendix A.1 for a details explanation about metrics.

14

2. Background

In this context, Castro’s work [9] proposed an on-policy bisimulation metric, which
induces the on-policy bisimulation equivalence relation mention before, specifically the
largest one ∼π.

Definition 3 (On-policy Bisimulation metric, Castro [9] - Theorem 2). A π-bisimulation
metric dπ∼ is the unique fixed-point of the operator T πK :M(S)→M(S), where

T πK(d)(x, y) = |rπx − rπy |+ γWd(P
π
x , P

π
y) (2.23)

, whereWd corresponds to the Kantorovich distance (also known as Wasserstein distance)
over the set of distributions P(S) with based distance d, where the minimal transport cost
is taken over all the couplings (see Section 2.2.4).

Notice a π-bisimulation metric allow us to relate the behavioral distances with the
value function under the current policy π, using the following theoretical guarantee.

Definition 4 (Theorem 3, Castro [9]). Given any two states x, y ∈ S in an MDP, |V π(x)−
V π(y)| ≤ dπ∼(x, y).

The operator T πK(d) is a contraction mapping, which works as standard operators in
dynamic programming for reinforcement learning (e.g. value iteration [46, 47]), which
in an iterative recurrent process will eventually converge to a fixed point dπ∼ up to an
accuracy δ, where T πK(d) maps effectively M(S) into itself, and the operator corresponds
to the bisimulation metric, that is T πK(d) = d∼ : S × S → R. Then, let an initial estimate
d0, we have iterative recurrent updates as

d0 → T π1 (d0) = d1 → T π2 (d1) = d2 · · · → dπ∼

2.2.4 Couplings and Kantorovich

In probability theory, Coupling [34] is a method that allows us to related two (possible
unrelated) random variables X,Y by constructing a new joint random variable (W,Z),
such that the marginal distributions corresponds to X,Y , that is

P (W = w) =
∑
z

P (W = w,Z = z) = P (X) (2.24)

P (Z = z) =
∑
w

P (W = w,Z = z) = P (Y) (2.25)

This coupling allow us to compare X and Y through the behavior of the joint dis-
tribution (W,Z). Notice that there can be different couplings from joint distributions
that satisfy the marginal distribution conditions; but in most cases we are interested in
analyzing joint distributions where W and Z are dependent.

The Kantorovich (or Wasserstein) distance [51] is defined as the minimum cost
required to transform one probability distribution into another, often conceptualized as
transporting mass from one distribution to another. This distance is based on the concept

15

2. Background

of coupling, where the optimal coupling represents the most efficient way to pair elements
from the two distributions in order to move mass between them. In other words, the
minimal cost is determined by finding the optimal coupling that minimizes the expected
transport cost. In the on-policy bisimulation metric7 (see Equation 2.23), it is

Wd(P
π
x , P

π
y) = inf

ψ∈Ψ(Pπ
x ,P

π
y)

E(x′,y′)∼ψ
[
d(x′, y′)

]
(2.26)

where

• Ψ(P πx , P
π
y) is the set of all possible couplings of the distributions P πx and P πy ,

• ψ(x′, y′) is a joint distribution that defines a coupling of P πx and P πy , and

• d(x′, y′) is the distance between x′ and y′.

2.2.5 Matching under Independent Couplings (MICO) metric

The on-policy bisimulation metric still faces challenges when computed at large scales,
mainly because it requires the exact computation of the Kantorovich distance, which
involves solving an optimal transport problem. This process can be computationally ex-
pensive, particularly in high-dimensional spaces.

Although the on-policy bisimulation can be computed via fixed-point iteration on the
operator T πK , the iterative cost is significant. According to Castro et al. [10], the
overall practical cost of computing a bisimulation metric is Õ(|S|5|Alog(ϵ)/log(γ), where ϵ
is the tolerance and γ is the discount factor rate. Most of this complexity is dominated by
the calculation of the Kantorovich distances Wd, which account for approximately |S|2|A|
per calculation. This makes it impractical to compute the metric for high-dimensional
state spaces. Additionally, computing the Kantorovich distances requires knowledge
of the transition distributions, which are typically not readily available. As a result,
other works have employed approximators for the operator under deterministic conditions
[9] or Gaussian assumptions [53] to estimate these distributions.

To address the aforementioned issues, Castro et al. [10] introduced the Matching
under Independent Coupling (MICo) metric, which employs the independent cou-
pling to replace the Kantorovich distance. While this surrogate metric introduces a looser
bound on convergence guarantees, it offers a more tractable alternative that still pro-
vides valuable insights into state similarity, even though it does not capture the exact
Kantorovich distance. Furthermore, it is broadly applicable to both deterministic and
stochastic environments.

Definition 5 (MICo update operator, Castro et al. [10]). Given π ∈ P(A)S , the MICO
update operator T πM : RS×S → RS×S

T πM (U)(x, y) = |rπx − rπy |+ γEx′∼Pπ
x ,y

′∼Pπ
y

[
U(x′, y′)

]
(2.27)

for all U : S × S → R, with rπx =
∑

a π(a | x)rax and P πx =
∑

a π(a | x)P ax (·) for all
x ∈ S,

7Notice bisimulation metric uses the 1-Wassertein metric not the general case d-Wassertein metric.

16

2. Background

In an independent coupling, both x′ and y′ are sampled independently from P πx (x′)
and P πy (y′), respectively, with no attempt to optimize the joint distribution ψ to minimize
the expected distance U , and having ψ(x′, y′) = P πx · P πy .

Similar to the on-policy bisimulation metric, the MICo operator T πM is a contraction
mapping and has a unique fixed point Uπ ∈ RS×S . An iterative recursive application of
the operator will converge to that fixed point. Additionally, the MICo operator provides
similar theoretical guarantees as other bisimulation metrics.

|V π(x)− V π(y)| ≤ Uπ(x, y) (2.28)

Diffuse Metric

The MICo metric is not a standard metric; it is a diffuse metric.

Definition 6 (Diffuse metric, Castro et al. [10]). Given a set X, a function d : X×X → R
is a diffuse metric if the following axioms hold: (i) d(x, y) ≥ 0 for any x, y ∈ X ; (ii)
d(x, y) = d(y, x) for any x, y ∈ X ; (iii) d(x, y) ≤ d(x, z) + d(y, z) ∀x, y, z ∈ X .

According to condition (i), in addition to being a pseudo-metric (like the on-policy
bisimulation metric, which allows zero values for distinct states), a diffuse metric permits
self-distances greater than zero.

Formally, the second term in the MICo operator (Equation 4.2.1) coincides with the
Lukaszyk-Kaminski distance [37]:

dLK(d)(ν, µ) = EX∼ν,Y∼µ[d(X,Y)], (2.29)

which is itself a diffuse metric. Consequently, the MICo metric is also a diffuse metric,
with a fixed point given by Uπ = |rπx − rπy |+ dLK(Uπ)(P πx , P

π
y).

Although it might initially seem counterintuitive for self-distances to be greater than
zero, this approach offers a practical alternative, especially in scenarios where the poli-
cies are stochastic. In such cases, trajectories can overlap significantly, complicating the
distinction between them.

The Lukaszyk-Kaminski distance dLK addresses this by measuring the expected dis-
tance between random variables from two distributions, focusing on the ”spread” rather
than exact point-to-point matches. This allows the MICO metric to capture expected
similarities and overlaps between next-states distributions, making it robust against vari-
ability and noise. This is crucial in reinforcement learning, where state distributions often
overlap without exact matching.

It is important to note that the notion of state self-distance serves as an indica-
tor of the dispersion within the distribution [10], having in general Uπ(x, x) > 0 and
Uπ(x, x) ̸= Uπ(y, y) for distinct states x, y ∈ S. Nonetheless, Uπ(x, x) = 0 iff the policy π
is deterministic when evaluated at x.

17

CHAPTER 3

Literature Review

3.1 Non-Uniform Sampling Experience Replays

Prioritized Experience Replay (PER) [44] is by far the most relevant non-uniform sam-
pling method, which samples visited experiences proportional to the absolute TD errors,
thereby efficiently reducing convergence time. Following these promising results, numerous
attempts have been made to further improve and refine non-uniform sampling to address
various challenges, such as sparse reward assignment [6, 13], experience retention [14], the
bias-variance trade-off [15, 23, 46, 47], trajectory sampling [13, 35], among others. The
wide variety of approaches can make it complex and unclear to differentiate between dis-
tinct and complementary methods. To clarify these distinctions, we categorize the methods
into three groups that aim to capture the primary nuances of these methodologies: Priority
Substitution, Priority Reweighting, and Auxiliary Mechanisms.

3.1.1 Priority Substitution

Substitution-based non-uniform sampling methods replace the priority definition with an
alternative proxy for expected learning progress, while still preserving the core concept of
assigning a priority to each element in the experience replay.

Andrychowicz et al. [6] proposed a hindsight method using universal policies, known
as Hindsight Experience Replay (HER). This method accepts both a current state and
a goal state, encouraging the experience replay to sample experiences in hindsight; in
other words, using a different goal on the fly than the one the agent was originally trying
to achieve in the episode. HER effectively handles sparse and binary rewards without
requiring additional reward manipulation. Subsequent efforts by de Bruim et al. [14]
explored a concept of experience selection, which address both retention and sampling by
using different proxies to define priorities based on the immediate and long-term utility.

18

3. Literature Review

They provided promising implementation guidelines to proxies that can be highly sensible
to a task at hand.

Alternatively, Dopamine Rainbow [23] empirically evaluates six alternatives of DQN
algorithms, demonstrating the significant importance of prioritized replay and multi-step
targets in enhancing DQN performance. Unlike single-step targets in temporal difference
(TD) error, a multi-step target considers n steps with intermediate actions determined by
the behavioral policy. This approach effectively substitutes single-step td-errors priorities
for multi-step td-error priorities to train DQN algorithms. The multi-step bootstrap target
[46, 47] efficiently balances the bias-variance trade-off, enabling the rapid propagation of
newly observed rewards to previously visited states. Fedus et al. [15] extends this work
by rigorously studying how different elements of ER impact the DQN algorithm. The
findings reveal the imporatance of multi-step targets for leveraging replay buffers with
large capacities, despite the significant degree of off-policyness they may introduce.

Recent works have explored the use of trajectories for both experience replay and
priority assignment. Dai et al. [13] proposed a two-stage method to enhance Hindsight
Experience Replay (HER) by incorporating diversity-based trajectory sampling. First,
trajectories are non-uniformly sampled from an experience replay buffer using priorities
based on determinantal point processes (DPPs). Second, a k-DPP is applied to each
trajectory to sample transitions with diverse goal states from the previously selected tra-
jectories during training. Without relying on semantic knowledge of the goal space or
tuning a curriculum, this method achieves efficient training and performance in robotic
manipulation tasks. Subsequently, Liu et al. [35] further explored the concept of Tra-
jectory Replay (TR), which stores complete trajectories instead of individual transition
tuples. In these methods, transitions are sampled in a backward manner, building on the
findings of Lee et al. [31], by considering the last steps of the trajectories as the initial
candidates for sampling in the current batch. Once all transitions from a trajectory are
sampled, a new trajectory is included in the batch. Priorities are then assigned to entire
trajectories rather than individual transitions, a method known as Prioritized Trajectory
Replay (PTR). The method outperforms Atari baselines by achieving a fast and stable
learning that only requires 10% of samples.

3.1.2 Priority Reweighting

Reweighting-based non-uniform sampling methods modify the priority definition by reweight-
ing the TD-error in some manner, while still preserving the core concept of assigning a
priority to each element in the experience replay.

Kumar et al. [26] propose a corrective feedback method, reweighing samples by adjust-
ing the TD-error target value with an estimated target value error, mitigating error accu-
mulation. Their method, called DisCor, outperforms in various RL scenarios, such us Atari
bechmark, maniputation tasks, and multi-task RL, and can easily be integrated in other
valued-based algorithms. Consequently, Liu et al. [36] provided theoretical explanation for
PER and DisCor methods, and proposed an optimal prioritization strategy based on regret
minimization, indicating transitions with higher hindsight TD error should be prioritized.
Their method ReMERT exploits temporal state ordering, showing outperforming results

19

3. Literature Review

in RL benchmarks such as MuJoCo, Atari, and Meta-world. Concurrently, SUNRISE [30]
reweighs target Q-values based on uncertainty estimates from a Q-ensemble, improving
signal-to-noise in Q-updates and stabilizing learning. Their method was integrated in
off-policy RL algorithms, such us SAC and Rainbow DQN, consistently, outperforming
the state-of-the-art results. Lastly, Sinha et al. [45] introduced a method that reweights
priorities by the likelihood-free density ratio between on-policy and off-policy experiences.
This method focuses on maintaining a diverse set of experiences in the replay buffer by
ensuring that experiences are sampled from low-density regions of the state space. While
their method is only applied to actor-critic methods, it shows promising results in 12
relevant Atari games, and 6 Deepmind control suite tasks.

3.1.3 Auxiliary Mechanism

Auxiliary mechanisms can be integrated with non-uniform sampling methods to modify
the sampling procedure and reduce dependence on priority, without necessarily preserving
to the core concept of assigning a priority to each element in the experience replay

Zha et al. [52] introduced an additional replay policy that learns to filter out irrelevant
experiences and apply priorities only to the relevant ones. Their method was evaluated
on various continuous control tasks using the DDPG algorithm, where it consistently
demonstrated improved sample efficiency. Later, Liu et al. [36] proposed a method called
ReMERN, which uses an error network to assign priorities. By training a task-specific
neural network, this method ensures greater robustness across different environments, ad-
dressing various sources of randomness compared to the ReMERT alternative. Later,
Pan et al. [43] proposed a model-based Stochastic Gradient Langevin Dynamics (SGLD)
sampling method, which generates hypothetical experiences using the current policy and
combines them with uniformly sampled experiences from an ER. The proposed SGLD
method efficiently addresses issues related to outdated priorities and insufficient sample
space coverage and outperforms PER in classical environments. Finally, Zhao and Tresp
[54] introduced a Curiosity-driven Experience Prioritization mechanism, utilizing an aux-
iliary curiosity module to encourage the over-sampling of trajectories with rare achieved
goal states, leading to a more balanced exploration and exploitation. This method can
be integrated with any off-policy RL algorithm and was tested on six robot manipulation
tasks, where it outperformed in terms of sample efficiency and final performance.

Our work aligns with methods that reweigh priorities but also includes an auxiliary
mechanism to calculate bisimulation metrics. Specifically, our method learns to approxi-
mated a bisimulation metric by learning state abstractions with an encoder neural network.
This network is updated with an objective loss function, which encourages to keep behav-
iorally similar states closer together and behaviorally dissimilar states farther apart in a
latent space. The bisimulation metric defines a behavioral similarity distance, which will
be used to reweigh priorities by trading off between single step TD-error and bisimulation
distance, encouraging more diverse sampling.

20

3. Literature Review

3.2 Learning State Abstractions

RL is a well-studied topic in machine learning, with multiple success and diverse appli-
cations. Nonetheless, there are still certain challenges in practice that have been widely
studied. Particularly, the sample-inefficient problem, which refers to the large amount
of data (experiences) required to learn a feasible policy, is of interest for this current work.

According to works from Lake et al. [28], Kaiser et al. [25], and Laskin et al. [29], it
has been empirically demonstrated that learning from high-dimensional observations such
as raw pixel is sample-inefficient. In fact, more concise observations based on state-based
features makes the learning of policies less computational intensive and sample-efficient
than learning from pixels [48]. According to Laskin et al. [29], it is feasible extract the
relevant state information from pixel data, as long as this information is present in the raw
data, making viable the learning of policies. Then, the only dilemma is to contextualize
an adequate a method to extract (or learn) these representations.

Under these circumstances, in RL, a state abstraction is defined as a technique used
to simplify the representation of the state space, making it more manageable and easier
for the learning algorithm to process and understand. Specifically, a state abstraction
[2] is a function, ϕ : S → Sϕ, that maps each true environmental state s ∈ S into an
abstract state sϕ ∈ Sϕ, which lives in a given lower dimensional state space. This state
abstraction is regularly an auxiliary task learned during training simultaneously with the
main RL objective. In this work, we are interesting in learning a surrogate bisimulation
metric, called MICO [10], as part of the learning of state abstractions; thereby we identified
three different approaches to learn these representations, termed as reconstruction-based,
contrastive-based, and behavioral-based abstractions.

3.2.1 Reconstructions Abstractions

Reconstruction-based abstractions use reconstruction objectives to reduce the dimension-
ality of the states, requiring additional hand-engineering to learn explicit temporal tran-
sition models in order to account for the dynamic properties of the RL environment.

The most representative approach by far is World Models [20], which is a model-based
RL method based on three models: a visual, a memory and a controller. In this approach,
a variational autoencoder (visual) is trained together with a LSTM model that represents
the memory, making possible to account for the environment transitions (temporal in-
formation). The low-dimensional temporal abstract representation in the visual model
enables a direct training in the reduced state space without requiring to spent expen-
sive training cycles in the actual environment. Along the same lines, Hafner et al. [22]
proposed a model-based agent, known as Deep Planning Network (PlaNet) that focus on
planning in a learned latent space. Specifically, their proposal uses a multi-step variational
inference objective (termed as Latent Overshooting), which aims to attempt two objec-
tives (1) encoding a latent state and reconstruction of the original image, and (2) infer
approximate posterior distributions of the latent states, which are consequently used to
predict the next states and rewards. By learning this lower-dimensional latent space that
captures the underlying state dynamic of the environment, the method achieves to solve

21

3. Literature Review

several continuous control tasks using considerable less episodes compare to model-free
algorithms.

While reconstruction-based methods is a viable solution to learn state abstractions,
they may encode parts of the observations that are not relevant to a given task. After
all, the inherit unsupervised learning that governs a variational auto-encoder cannot, by
definition, know what will be useful for the RL task at hand.

3.2.2 Contrastive Abstractions

Contrastive-based abstractions focus on learning more useful semantic representation by
distinguishing between similar (positive) and dissimilar (negative) pairs of data points,
typically by maximizing the distance between negatives and minimizing the distance be-
tween positives in a latent space.

In this context, van den Oord et al. [42] proposed Contrastive Predictive Coding
(CPC), an unsupervised learning approach for representation learning, which uses autore-
gressive models (e.g. LSTM) for predicting future data points in a latent space. To do
that, the method uses Noise-Contrastive Estimation (NCE) to contrast true future sam-
ples and a set of randomly sampled negative examples. Their method provides promis-
ing performance on several domains, suggesting a possible universal method for different
modalities. Consequently, in the RL domain, Srinivas et al. [29] eliminates the depen-
dency on autoregresive pipelines by incorporating implicit temporal information through
augment temporal sequential frames. Their method, CURL, includes a simple instance
auxiliary contrastive learning model that maximizes agreement between augmented ver-
sions of the same state, where each state is a stack of temporally sequential frames. The
positive and negative pairs are chosen, performing instance discrimination on those frame
stacks, which allow to learn both spatial and temporal discriminative features. Along the
same lines, Anand et al. [5] proposed a contrastive approach based on maximizing mutual
information between local, global, and temporal features. To do that, an InfoNCE tech-
nique is used where the positive samples corresponds to temporarily close states (e.g. the
state in the next time step), and negative samples corresponds to distant temporal states.
This approach successfully learns more granular semantic representations, such as agent
location and objects, while ignoring irrelevant information, such as background textures.

Contrastive-based abstractions learn efficient semantic state representations without
relying on reconstruction losses. However, they still have certain limitations because they
do not incorporate information about the downstream task that guides the RL system.
According to Zhang et al. [53], these methods are task-agnostic.

3.2.3 Behavioral Abstractions

Behavioral-based abstractions incorporate the downstream task knowledge, by considering
the behavioral equivalence between states. Specifically, bisimulation metrics serve as a
form of state abstraction that groups states si and sj that are ’behaviorally equivalent’.
Roughly speaking, we can understand that two states are behavioural equivalent if they
can get similar long-term expected accumulated reward (the RL objective).

22

3. Literature Review

Deep bisimulation for control (DBC) [53] leverages this metric to learn task-aware
invariant representations by assuming that the model that governs the transitions in the
implicit MDP follow a Gaussian distribution. In this approach, an encoder is trained
to minimize the mean square error between the on-policy bisimulation metric and L1
distance in the latent space. By distributing the states according to the bisimulation metric
in the latent space, this method achieves to account for behavioral similarity, avoiding
distractors in images (e.g: clouds for an automatic driving system). Additionally, as the
bisimulation metric considers explicitly transitions and rewards, it achieves to address the
temporal dynamics of the system when learning representations. Consequently, Castro
et al. [10] successfully eliminates the Gaussian assumptions by proposing a surrogate
on-policy bisimulation metric, which work more generally in deterministic and stochastic
environment, and with different value-based algorithms. Their method, Matching under
Independent Coupling (MICo), replace the computational expensive calculation of the
Kantorovich term for the independent coupling, providing a higher theoretical bound, but
still capturing behavioral similarity. As a result, the incorporation of MICo learning on
other algorithms allows to outperform them in Atari Learning Environments and DM-
Control benchmarks. Finally, Castro et al. [11] proposes an alternative perspective of
MICo metric by using positive definite kernels. They introduced a state similarity kernel
in the state space, which induces the reduced MICo distance [10], yielding similar strong
results, and providing a more complete theoretical analysis.

23

CHAPTER 4

Methodology

This section outlines the methodology used in the present work by walking through a
motivating example that revisits the bisimulation definitions from Section 2.2 to illustrate
why our method is feasible and effective. Following this, we define our proposed method
and provide a detailed explanation of the algorithm used in practice.

4.1 A Motivating Example: Grid World

The Grid World, a simple toy environment (see Figure 4.1a), is used to explain our method.
It has the following properties:

• The state space is discrete an given by all the positions of the agent in the grid,
si,j ∈ S : {0, n} × {0,m}.

• The action space is discrete given by the four possible directions: down (0), right
(1), up (2) and left (4), a ∈ A : {0, 3}.

• The transitions are deterministic and restricted to adjacent cells, such that the agent
will move to any adjacent cell with a probability of P (s, a) = 1 (if the agent encoun-
ters a wall, it remains in the same state).

• The rewards are binary and sparse, with the immediate reward always being -1 unless
the agent reaches the goal (G), obtaining a reward 100.

• And the discount factor γ is 0.99

24

4. Methodology

4.1.1 Bisimulation in a Grid World

The two isolated rooms in the environment (see Figure 4.1b) clearly showcase similar
behaviors due to their symmetry, making them an coherent starting point for analyzing
behavioral similarities. If we examine the properties of bisimulation (see Definition 1),
we can notice that both reward and transition probability equivalences are easily satis-
fied when states from each room are paired symmetrically, corresponding to the largest
bisimulation ∼.

It is important to note that verifying reward and transition equivalences requires con-
sidering all actions, states, and equivalence classes C, which can be quite complex. How-
ever, in the case of the Grid World, it is straightforward to check that these properties
hold because the transitions are deterministic. As a result, the sum over the equivalence
relation P as (C) are always 4 (except for the terminal state), and the rewards are the same
consistently throughout the environment, except when the agent reaches the goal (when
it becomes 100). We invite the reader to verify these statements.

(a) Grid World (b) Bisimulation

Figure 4.1: Bisimulation in Grid World. A basic Grid World illustrating the process of
obtaining the largest bisimulation ∼, showing the agent (sky blue circle), goals (green G square),
transitions, actions, and reward structures, demonstrating how bisimulation captures behavioral
similar states into groups of equivalence classes.

However, RL generally exhibits more complex behaviors rather than just symmetrical
ones. We progressively analyze more complex behaviors later. For now, we start by open-
ing a small passage between the two rooms. When a passage is introduced, the equivalence
classes collapse to the identity relation, a trivial solution (see Figure 4.2a). This occurs
because, as mentioned earlier, bisimulation is a very strong theoretical assumption that
requires exact matching of rewards and transitions, which is often challenging to achieve
in practice.

25

4. Methodology

4.1.2 On-policy Bisimulation in a Grid World

On-policy bisimulation (Definition 2) addresses the bisimulation collapse issue by consid-
ering only the transitions and rewards specified by a given policy1. In the deterministic
case of our Grid World, Equation 2.21 simplifies to:

Given a = π(x),

rπx = rax,

∀C ∈ SBπ , Pπx (C) =
∑
x′∈C

P ax (x′).
(4.1)

Thus, it is easy to verify that the properties are satisfied; we only need to check
one reward and one transition per state to ensure the reward and transition equivalence
properties hold, allowing us to obtain the largest on-policy bisimulation relation, denoted
as ∼π. Figure 4.2b illustrated how the on-policy bisimulation effectively reduces the initial
MDP of 13 states to an MDP of 4 states.

(a) Bisimulation Collapse (b) On-policy Bisimulation

Figure 4.2: Bisimulation Collapse and On-Policy Bisimulation. (a) Bisimulation collapse
due to the opening of a passage, violating transition equivalence between state pairs (e.g., s11, s41).
(b) On-policy bisimulation solution, ensuring reward and transition equivalence only for a given
policy (denoted by sky blue arrows).

While these groups clearly capture the behavioral similarity of states in the Markov
chain induced by the given policy, they are still not practical for RL, where we commonly
estimate values from data, and the calculation of equivalence relations can be highly
sensitive to infinitesimal variations.

4.1.3 On-policy Bisimulation Metric in a Grid World

On-policy bisimulation metric (see Definition 3) provide a smoother equivalence notion
with the use of behavioral distances from every state to all others. Specifically, the deter-

1Note that this method requires knowledge of the policy being used; we employed the optimal policy
π∗ obtained using a value iteration algorithm [47]. In practice, an online policy also can be considered.

26

4. Methodology

ministic nature of the Grid World allow us to reduce the on-policy bisimulation operator
to the operator bellow according to Castro [9].

T πk (d)(x, y) = |rπx − rπy |+ γd(x′, y′) (4.2)

where x′ = N (x, π(x)) corresponds to the next state given the state x and the action
taken by the current policy π(x); in other words, N is a function that deterministically
selects the next state with P (N (s, π(S)) = 1.

Given that the on-policy operator T πk (d) is a contraction mapping that converges to a
fixed point dπ∼, we can leverage the recurrence relation over d in Equation 4.2 to obtain the
exact on-policy bisimulation metric through an iterative application of the operator,
starting from an initial estimate d0.

d0 → T π1 (d0) = d1 → T π2 (d1) = d2 · · · → dπ∼

Specifically, we can initialize d0 in a tabular form as a matrix of full zeros, where each
cell corresponds to a pair of states in the environment (see Figure 4.3). The updates are
then made using a dynamic programming approach by repeatedly calculating:

dn(x, y)← |rax − ray |+ γdn−1(x
′, y′), (4.3)

where x′ and y′ are the next states from taking action a in states x and y, respectively.

Figure 4.3: Recursive On-Policy Bisimulation Operator. Calculation of exact on-policy
bisimulation distances through recursive updates of an initial estimate d0 that converges to the
metric d3 = dπ∼.

By applying a Multidimensional Scaling algorithm to the final fixed point distances
dπ∼, an approximation of the states in a 2D plane is obtained (see Figure 4.4), effectively
clustering states with similar behaviors under a soft notion of distance.

The current work explores these behaviors with respect to the experiences stored in
the experience replay. Note that an experience tuple is defined as et = (st, at, rt, st+1). It
is evident that experiences with a higher on-policy bisimulation distance between st and
st+1 are likely to be more informative (or ’surprising’) than transitions between behav-
iorally similar states (see Figure 4.5a). By prioritizing transitions with greater behavioral
differences, our method encourages more diversity in the sampling process. This is the
main idea behind our approach.

27

4. Methodology

Figure 4.4: Multidimensional Scaling of On-Policy Bisimulation Distances. The MDS
algorithm is applied to on-policy bisimulation distances, revealing clusters of states separated
according to the computed distances.

(a) Current-vs-Next Strategy (BPERcn) (b) All-vs-All Strategy (BPERaa)

Figure 4.5: Bisimulation Prioritization Strategies. Transitions corresponding to a mini-
batch with 6 experiences, where (a) depicts the Current-vs-Next Strategy, calculated between
current and next states, and (b) depicts the All-vs-All Strategy, calculated as the average distance
between each current state and all other current states in the mini-batch.

28

4. Methodology

4.2 Bisimulation Prioritized Experience Replay

Complex environments with high-dimensional representations (e.g., pixels) make the es-
timation of on-policy bisimulation metrics in a tabular form intractable. To address this
challenge, we employ an indirect approach to approximate the bisimulation distances
within the RL loop. Specifically, works by Zhang et al. [53] and Castro et al. [10]
have demonstrated that it is more effective and general to obtain a bisimulation metric as
part of the online learning of state abstractions. In the following sections, we will describe
the specific method for learning these abstractions and how this approach enables us to
approximate the metric and utilize it for prioritization on the fly.

4.2.1 Learning State Abstractions

The present work employs a surrogate on-policy bisimulation metric known as the MICO
metric [10] (see Definition 5), where the Kantorovich distanceWd calculation is substituted
with the independent coupling. For reference, we restate the operator equation here:

T πM (U)(x, y) = |rπx − rπy |+ γEx′∼Pπ
x ,y

′∼Pπ
y

[
U(x′, y′)

]
This MICo operator is used to learn a parameterized state abstraction ϕω(x) : S → Sϕ

(parameterized by ω), which maps a true environmental state (e.g., pixels) to a lower-
dimensional latent representation. The goal is to position these representations in such a
way that a chosen parameterized distance Uω(x, y) coincides with the MICo distance in the
latent space (see Figure 4.6). Since the MICo distance is a diffuse metric (see Definition
6), the parameterized distance must ensure positive self-distances. To achieve this, the
following parameterized distance function was proposed in [10] for any x, y ∈ S:

Uπ(x, y) ≈ Uω(x, y) :=
∥ϕω(x)∥22 + ∥ϕω(y)∥22

2
+ βθ (ϕω(x), ϕω(y)) (4.4)

where the first term ensures positive self-distances2, ϕω(x), ϕω(y) corresponds to the
abstract representations, θ (ϕω(x), ϕω(y)) is the angle between vectors ϕω(x) and ϕω(y),
and β is an hyperparameter.

Consequently, the recursive nature of the operator T πM (U)(x, y) is used to define a
loss function, which works similarly to the Bellman recurrence process in DQN. In this
approach, a target is defined, and we aim to approximate this target with a online estimate.
Specifically, in our case, the loss function measures the difference between a learning target
MICo metric3 TUω̄ and the online MICo metric Uω, as

LMICo(ω) = E⟨x,rx,x′⟩,⟨y,ry ,y′⟩

[(
TUω̄

(
rx, x

′, ry, y
′)− Uω(x, y)

)2]
(4.5)

TUω̄
(
rx, x

′, ry, y
′) = |rx − ry|+ γUω̄

(
x′, y′

)
(4.6)

2In theory, the second term can be any other notion of distance, such as the euclidean distance. However,
empirical results from MICo[10] have shown that the angular distance provides greater numerical stability.

3Uω̄ is an unbiased estimator of the independent coupling.

29

4. Methodology

where ω̄ is a separate copy of the network parameters, synchronized with ω at infre-
quent intervals, and the pairs of transitions ⟨x, rx, x′⟩ and ⟨y, ry, y′⟩ are sampled from the
experience replay4 5.

Figure 4.6: MICo Latent Space. An illustration of the latent space discovered by MICo
Learning, where state representations are grouped based on behavioral similarity. Behaviorally
similar states are clustered together (states x, y), while dissimilar states are positioned farther
apart (states y, z).

The MICO learning can be integrated into any value-based agent by learning an es-
timate Qξ,ω(x, ·) = ψξ(ϕω(x)), where ϕω(x) corresponds to the representation of state x,
and ψξ corresponds to the value approximator. This work specifically focuses on the DQN
algorithm (see Section 2.1.3), where the Qξ,ω corresponds to the Q-values. In this scenario,
the MICO loss LTD is combined with the temporal-difference loss LMICo as

Lα(ξ, ω) = (1− α)LTD(ξ, ω) + αLMICo(ω) (4.7)

, where α ∈ (0, 1). Figure 4.7 illustrates the network architecture used for learning,
showing that the MICo loss is applied after the convolution layers and used to calculate
the total loss Lα. Note that the same parameters ω are shared for both losses, without
the need for additional parameters.

4The actions are not considered because we assume a fixed policy under the on-policy assumption.
5When distances are large, they can oversaturate the MICo loss, causing instability in gradient updates.

Therefore, in practice, a Huber loss is employed to focus on small differences between states.

30

4. Methodology

Figure 4.7: MICo Learning. An illustration of the MICo Learning framework using a standard
Q-Network with a slight modification: an additional output from the encoder ϕω (sky-blue layers)
is extracted immediately after the convolutional layers to obtain state representations, apply an
squarify method, and compute the MICo loss. The TD-loss is computed as in the standard DQN
algorithm..

Figure 4.8: Illustration of the squarify method. This method replicates the samples along
an additional dimension, reshapes the resulting square tensor, and then duplicates and permutes
it; resulting in an all-vs-all comparison between each representation in the current mini-batch.

Although the MICo loss LMICo requires pairs of transitions ⟨x, rx, x′⟩ and ⟨y, ry, y′⟩, in

31

4. Methodology

practice, transitions are not sampled as pairs; we only have access to a mini-batch of un-
paired transitions, necessitating a method to pair them. To address this issue, a squarify
method [9] was proposed to construct pairs of transitions by pairing each transition with
all others within the current mini-batch and then calculating the MICo loss. Figure 4.8
illustrates how this squarify process works.

4.2.2 Priority Strategies

In the following, we propose our method, Bisimulation Prioritized Experience Re-
play (BPER), along with two strategies for assigning priorities on the fly. The MICo
metric is approximated online as part of the state abstraction learning process, so that
it is enough to use Uω to calculate a MICo distance between two states and update the
priorities accordingly.

Another possible option for calculating the distance online is to use the target distance
TUω̄ , which uses the corresponding rewards difference term. However, since the metric will
eventually converge to a fixed point, it is sufficient and more convenient to use Uω, as this
approach does not require incorporating rewards into its calculation.

Strategy 1 (Current vs Next: BPERcn). Consider a current minibatch B ⊂ E ,
|B| = k, containing transition experiences ei = (si, ri, ai, si+1). Each transition can be
associated with a distance Uω(si, si+1), which effectively quantifies how behaviorally
different the current state si is compared to the next state si+1. Consequently,
the re-weighted priority is calculated as follows:

pi = (1− µ)|δi|+ µUω(si, si+1) + ϵ, (4.8)

where δi corresponds to the TD-error of the experience, µ ∈ [0, 1) is the priority
weight that controls the balance between the TD-error and the bisimulation distance,
and ϵ is a small positive constant to ensure that experiences are revisited even when
the weighted priority is equal zero.

The distance Uω(si, si+1) serves as an indicator of a ’surprising’ transition, suggesting
that transitions with larger distances are more informative and likely to contribute to
greater expected learning progress. While using TD-error as an standalone method could
potentially overemphasize some transitions, leading to a loss of diversity [44],[43],[15], our
method consistently encourages diversity in the experiences by reweighting the TD-error,
regulated by a parameter η ∈ [0, 1).

Similar to a proportional prioritization in PER [44] (see Section 2.1.4), the sampling

probability for an experience ei is given by P (t) =
pαt∑
k p

α
k

, where α controls the degree

of prioritization. Additionally, the weighted importance sampling for unbiased updates is

computed as wi =
(

1
N ·

1
P (i)

)β
, followed by a normalization step 1

maxk wk
. In practice, a

sum tree data structure is used to optimize the sampling procedure.

32

4. Methodology

Strategy 1 provides a theoretical valid method to characterize the priority of a tran-
sition based on a behavioral distance between the current and next state. However, in
practice, the trajectories may overlap significantly, resulting in overlapping states dis-
tributions with highly similar behaviors. Additionally, since the bisimulation is approx-
imated online, there are sources of variability in the approximation until reaching the
convergence point. These issues can trigger trajectories with many similar distances be-
tween current and next states, with only a few behavioral different states appearing after
long rollouts; resulting in scarce high-priority transitions, and consequently affecting the
effectiveness of prioritization technique. To address these issues, the following empirical
solution is proposed.

Strategy 2 (All vs All: BPERaa). Consider a minibatch B ⊂ E , |B| = k, with
transition experiences ei = (si, ri, ai, si+1). Each transition ei can be associated with
a relative bisimulation distance

UBω (si) =

k∑
i=1

Uω(si, sk), ∀ek = (sk, rk, ak, sk+1) ∈ B (4.9)

Consequently, the re-weighted priority will be calculated as follows

pi = (1− µ)|δi|+ µUBω (si) + ϵ (4.10)

where δi corresponds to the TD-error of the experience, µ ∈ [0, 1) is the priority
weight that controls the balance between the TD-error and the bisimulation distance,
and ϵ is a small positive constant to ensure that experiences are revisited even when
the weighted priority is equal zero.

Although the current states from different transitions are not directly connected by
a valid transition, the bisimulation metric allows us to measure behavioral dissimilarity
between all states in the environment. This enables the calculation of a behavioral distance
relative to the current minibatch by computing the mean distance between each current
state and all other current states in the minibatch (see Figure 4.5b). This relative distance
serves as a smoother indicator of how behaviorally dissimilar one initial state is compared
to the others, indicating ’surprising’ or more informative transitions. In practice, we use
the squarify method, along with reshaping and averaging operations, to compute these
distances on the fly. Similar as before, the α-priority, weighted importance sampling, and
sum tree data structure are used for the sampling procedure.

Algorithm 3 presents the pseudo-code for the entire prioritizing process. Similar to
the PER method, the priorities are only updated for the current sampled mini-batch
to maintain computational efficiency. Notice the algorithm depicts the procedure for
Strategy 1 (BPERcn). Strategy 2 (BPERaa) requires a minor replacement in line 19,
where Uω(si, si+1) should be replaced with UBω (si). An additional algorithm illustrating
only MICo learning with DQN, without BPER, is provided in Appendix A.2 for reference.

33

4. Methodology

Algorithm 3 DQN with Bisimulation Prioritized Experience Replay (BPERcn)

1: Input: minibatch k, step-size η, replay period K and size N , exponents α and β,
budget T (total steps), priority weigh µ.

2: Initialize action-value function Q with random weights ξ, ω
3: Initialize target action-value function Q− with weights {ξ̄, ω̄} ← {ξ, ω}
4: Initialize replay memory D = ∅ with capacity N , p1 = 1 (inital priority)
5: for t = 1 to T do
6: Observe st
7: Choose action at ∼ πϵθ(st)
8: Execute action at and observe rt and st+1

9: Store transition (st, at, rt, st+1) in D with maximal priority pt = maxi<t pi
10: if t ≡ 0 mod K then
11: Sample minibatch B of transitions ej with probability P (j) =

pαj∑
i p

α
i

12: Compute importance-sampling weight wj = (N · P (j))−β /maxiwi

13: Set yj =

{
rj for terminal sj+1

rj + γmaxa′ Q
−(sj+1, a

′; {ξ̄, ω̄}) otherwise

14: Compute TD-error δj = yj −Q(sj , aj ; {ξ, ω}), and loss LTD = δ2j
15: Squarify minibatch B to get transition pairs ⟨x, rx, x′⟩ , ⟨y, ry, y′⟩
16: Compute MICo loss LMICo =

(
TUω̄ (rx, x

′, ry, y
′)− Uω(x, y)

)2
17: Compute total loss Lα(ξ, ω) = (1− α)LTD(ξ, ω) + αLMICo(ω)
18: Perform a gradient descent step on Lα(ξ, ω), weighting the updates by wj
19: Update transition priority pj ← (1− µ)|δj |+ µUω(sj , sj+1) + ϵ
20: Every C optimizing steps update {ξ̄, ω̄} ← {ξ, ω}
21: end if
22: end for

34

CHAPTER 5

Experimental Setup

The proposed method was tested in two setups: 1) 31-state Grid Worlds illustrated in
Figure 4.6; similar to those environment in the works of Pan et al. [43] and Castro [9],
where calculating the bisimulation metrics is relatively straightforward; and 2) the Classic
Control benchmark suite1, and the Lunar Lander from the Box2D suite2. In these setups,
states are partially observable derived from pixels, rather than full descriptive states.

The experiments aims to validate our proof of concept rather than test state-of-the-art
results. Although the Grid Word was trained using pixels-based states, the underlying
31-state MDP enabled us to measure evaluation metrics without high computational cost.
Specifically, we used the Grid World to evaluate our algorithm’s performance on three key
problems:

• Task-agnostic Sampling. We examined how well the algorithm prioritizes be-
haviorally dissimilar states by showing distributions of exact current-next on-policy
bisimulation distances and distribution of priorities.

Specifically, the on-policy bisimulation recurrent operator T πK for deterministic envi-
ronments (see Equation 4.2) was employed to compute exact on-policy bisimulation
distances, providing a quantitative evaluation. In the experience replay, we asso-
ciated each transition with the exact on-policy bisimulation distance between the
current and next state. This exact distance effectively serves as a behavioral value
indicator per transition, and allow us to assess the degree of behavioral similar or
dissimilar transitions in an experience replay by plotting their distributions over
time. The reader must keep in mind that these exact distances differ from the ap-
proximated distances used in the BPERcn strategy; while the BPERcn provides

1Classic Control benchmark: https://www.gymlibrary.dev/environments/classic control/
2Box2D suit benchmark: https://gymnasium.farama.org/environments/box2d/

35

https://www.gymlibrary.dev/environments/classic_control/
https://gymnasium.farama.org/environments/box2d/

5. Experimental Setup

approximate measures, the operator T πK offers ’theoretical’ exact distances3.

Additionally, a visual inspection was conducted to examine the transition frames for
each quartile of the priority values in the experience replay.

• Outdated Priorities. we replicated the sampling distribution experiments from
Pan et al.’s work [43]. The purpose of this experiment is to assess how closely
the sampling priorities distribution updated per minibatch aligns with the ideal
distribution, achieved when all possible transitions under the current policy are
updated at each time step4.

Given the sampling distribution of priorities pi(·) from the experience buffer and
the corresponding ideal distribution p∗i (·), (1) the on-policy weighting is given by∑31

j=1w
π(sj)|pi(sj)−p∗i (sj)|, i ∈ {1, 2}, and (2) the uniform weighting is 1

31

∑31
j=1 |pi(sj)−

p∗i (sj)|, i ∈ {1, 2}, where p1 corresponds to the PER method and p2 corresponds to
the BPER method. Please refer to Appendix A.3 for a more detailed explanation of
this procedure.

• State Space Coverage. We visually and quantitatively assessed the level of ex-
ploration per algorithm. We plotted the distribution of visited states in our Grid
Worlds, similar to [43], and calculated the corresponding entropy of the state visita-

tion distribution as H(S) = −
∑|S|

i=1 p(si) log p(si), where p(si) is the probability of
visiting state si, calculated as the ratio of visits to state si over the total number of
visits to all states.

Additionally, our algorithm was evaluated against standard ER and Prioritized ER
in classical environments, such as: Cartpole, Mountain Car, Acrobot, and LunarLander,
using pixel-based states. For measure the performance, we use the following evaluation
metrics:

• Episode Reward. The episode reward consist in the accumulated reward in an
entire trajectory. It serves as an indicator of performance in RL algorithms, where
large values indicate that the agent is learning and acting efficiently.

• Episode Reward Gain. Due to overlapping results, an episode reward metric
was calculate to compare the methods PER, BPERaa, and BPERcn against two
baselines: DQN and DQN + MICo.

Episode Reward Gain is calculated per episode as follows: RG(τ) = R̄method(τ) −
R̄baseline(τ), where τ can correspond to trajectories of different lengths5, and R̄
corresponds to the mean episode reward over independent executions. A positive

3The calculation of the exact on-policy bisimulation distances is only feasible in Grid World, where the
true states are fully known. In practice, such information is typically not accessible.

4While the ideal distribution represents the best-case scenario, it is impractical to update all possible
state priorities under the current policy at each step in practice.

5To handle these differences, we use back and forward filling for NaN values in the episodic reward
trajectory results.

36

5. Experimental Setup

Episode Reward Gain indicates an improvement over the baseline, while a negative
value indicates underperformance compared to the baseline.

• Mean Batch Priority. It is impractical to calculate prioritization distributions
for classical environments due to high-dimensional stacked states. However, it is
still possible to gain some insight into the priority values by studying the average
priority in each minibatch sampled during training.

The RL algorithm used for all our experiments was DQN [40], with extensions added
in a plug-in fashion while maintaining consistent hyperparameters across different envi-
ronments and algorithms to ensure fair comparisons. For PER and MICo state-of-the-art
hyper-parameters were used, extracted from the original papers, and only a sweep over
the newly introduced hyperparameter ν was conducted for the 31-state Grid World. A
detailed explanation of the hyperparameters used is provided in Appendix A.4. The al-
gorithms were implemented using the TorchRL library6. Specifically, the baseline DQN
algorithm was taken from the SOTA implementations available at the TorchRL GitHub
repository, and the corresponding extensions (PER, MICo, MICo + BPER) were devel-
oped and added. The MICO extension was reproduced on TorchRL based on the original
repository: Google Research MICO. The experiments were executed on an RTX 4060
GPU with 8GB of memory. The algorithm is accessible through the university GitLab
and a personal GitHub.

6TorchRL: https://pytorch.org/rl/stable/index.html

37

https://github.com/pytorch/rl/tree/main/sota-implementations/dqn
https://github.com/pytorch/rl/tree/main/sota-implementations/dqn
https://github.com/google-research/google-research/tree/master/mico
https://git.cs.bham.ac.uk/projects-2023-24/oxg397
https://github.com/ZosoV/final_project
https://pytorch.org/rl/stable/index.html

CHAPTER 6

Results and Discussion

This section presents a series of experiments conducted in different RL environments. A
31-state simple GridWorld was used as a proof of concept to evaluate three key problems
in non-uniform sampling methods: task-agnostic sampling, outdated priorities, and state
space coverage. After that, a general evaluation was performed on classical environments.
This section integrates results with inline discussion to enhance clarity and understanding;
however, an additional summary discussion is provided at the end to highlight the most
relevant findings.

6.1 Episode Reward in Grid World

In the following experiments, the full priority weighting (weight: 1.0) version was used for
both BPERcn and BPERaa variants, such that prioritization is based solely on bisimu-
lation distances, without considering TD-error1. We make that decision deliberately to
contrast the methods under a strong bisimulation prioritization. The algorithm was exe-
cuted for 5 independent runs, with the mean, minimum, and maximum values (represented
by the lower and upper margins of the shaded regions) shown per time step in Figure 6.1.
The methods DQN and DQN + MICo served as baseline methods for comparison.

Figure 6.1a shows the episode reward per time step during training, calculated using
a 100-episode moving average window. While all methods demonstrate improvement over
time and converge after 100k steps, both BPERcn and BPERaa show promising improve-
ments early in the training process, outperforming the baselines and the PER extension.
However, as training progresses, BPERaa maintains more consistent and stable improve-
ments, suggesting better management of priorities in experience replay, whereas BPERcn
experiences a decrease in performance after 30k steps. The PER alternative underperforms

1Additionally, a sweep over various priority weights (0.1, 0.25, 0.5, 0.75, and 1.0) was conducted, and
the results are provided in Appendix A.6.

38

6. Results and Discussion

compared to all other methods, highlighting the effectiveness of prioritizing behaviorally
dissimilar states.

(a) Episode Reward (b) Cumulative Reward

Figure 6.1: Episode and Cumulative Reward in Grid World. (a) Episode reward perfor-
mance over time, averaged with a moving window of 100 episodes across 5 independent executions.
(b) Cumulative Reward performance over time, averaged over 5 independent executions, with
shaded regions representing the variability for each method.

The cumulative reward, as shown in Figure 6.1b, indicates the total reward collected
over time, which provides insight into the overall reward collection of each method. These
results suggest that BPERaa produces a policy that consistently collects higher rewards,
outperforming the direct baseline DQN + MICo, and demonstrating that BPERaa pos-
itively impacts DQN + MICo’s performance. In contrast, the BPERcn strategy shows
improvements in the early stages of learning but starts to decline around the 50k time
step, reducing reward acquisition compared to DQN + MICo and eventually performing
similarly to the baseline DQN. Overall, the PER method performs the worst, struggling
to collect rewards and hindering the learning of the baseline DQN.

(a) Baseline DQN (b) Baseline DQN + MICO

Figure 6.2: Episode Reward Gain in Grid World. Episode reward gain performance over
time, averaged with a moving window of 100 episodes across 5 independent executions. The values
was calculated against two baselines (a) DQN, and (b) DQN + MICO.

39

6. Results and Discussion

The episode reward gain, shown in Figure 6.2, provides an alternative perspective for
evaluating improvements relative to the baselines, DQN and DQN + MICo, respectively.
This evaluation metric is calculated using a moving average window of 100 episodes. The
results confirm the promising improvements of the BPERaa strategy over the other meth-
ods relative to both baselines. Both strategies, BPERaa and BPERcn, exhibit similar im-
provements in the early stages of training. However, the performance of BPERcn declines
around the 30k step under both baselines. Interestingly, Figure 6.2b reveals a decreasing
trend around the 50k step for the BPERaa method. Although the performance eventually
recovers to match that of DQN + MICo, the decline suggests some instability. Under both
baselines, the PER method significantly underperforms, hindering the effective learning of
the policy.

6.2 Task-agnostic Sampling

This section aims to empirically demonstrate that the proposed method efficiently priori-
tizes samples based on their behavioral relevance.

Figure 6.3 illustrates the distribution of exact current-next on-policy bisimulation dis-
tances in the experience replay over time, with the final distribution (at 100k step) high-
lighted at the top of the figure. In both BPERcn and BPERaa strategies, the behavioral
dissimilar transitions evolve to larger values compared to PER over time, with frequency
peaks on distances around 15, 20, and 30. It clearly demonstrates how our method pri-
oritizes more frequently those larger behavioral dissimilar transitions. As the BPERcn
encourages highly dissimilar transition between the current and next states approximated
during training, the results from Figure 6.3b are expected. However, a more interesting
result is that, despite of BPERaa prioritizes transitions based on relative priorities within
the current mini-batch, this second strategy is still able to prioritize dissimilar experiences
as efficiently as the strategy BPERcn (see Figure 6.3c).

(a) DQN + PER (b) DQN (MICO) + BPERcn (c) DQN (MICO) + BPERaa

Figure 6.3: Exact On-policy Bisimulation Distributions. The distribution of exact current-
next on-policy bisimulation distances in the experience replay over time for three methods (a) DQN
+ PER, (b) DQN + MICO + PER, and (c) DQN + MICO + BPERaa, with the final distribution
(at 100k step) highlighted at the top of each subfigure.

Moreover, despite the methods aiming to prioritize highly dissimilar transitions, Figure

40

6. Results and Discussion

6.3 still shows a significant number of transitions with exact bisimulation distances close to
zero. This outcome could be influenced by the use of a large buffer size of 100 000, which
was deliberately set to a high capacity to observe behavior under large-scale conditions;
more common in state-of-the-art methods.

Figure 6.4 illustrates the evolution of priority distributions in the experience replay
over time, with the final distribution (at 100k steps) highlighted at the top. While these
results do not directly associate each priority value with the exact bisimulation distances
mentioned earlier, they provide insight into how many behaviorally dissimilar transitions
in the experience replay are being prioritized over time. The results show an accumulation
of low priority values over time in the PER method, with relatively few higher priority
values. Although those priority values are low close to zero, their combined effect can
occupy a large portion of the probability area, resulting in transitions with low TD-error
being sampled more frequently. This phenomenon hinders DQN learning and may explain
the poor episode rewards observed in previous experiments. In contrast, both proposed
strategies, BPERcn and BPERaa, consistently generate higher priority values over time,
encouraging more behaviorally dissimilar transitions, compensating the accumulation of
low priority values. Notably, BPERaa exhibits slightly greater variability in Figure 6.4c.
Despite of BPERcn and BPERaa still exhibiting an accumulation of low priority values,
their frequency is lower compared to the PER method.

(a) DQN + PER (b) DQN (MICO) + BPERcn (c) DQN (MICO) + BPERaa

Figure 6.4: Priority Distributions. The distribution of priorities in the experience replay over
time for three methods (a) DQN + PER, (b) DQN + MICO + PER, and (c) DQN + MICO +
BPERaa, with the final distribution (at 100k step) highlighted at the top of each subfigure.

6.2.1 Visual Inspection

Figure 6.5 provides a qualitative visual inspection of the frames corresponding to the main
quartiles of priority values in the experience replay collected at the 90k time step. The
lower quartiles (min and 25%) represent frames with low sampling probabilities, while
the higher quartiles (75% and max) represent frames with higher sampling probabilities.
The top row shows the current states, and the bottom row shows the next states for each
transition.

Figure 6.5a illustrates the difficulties of the PER method when attempting to prioritize
state transitions using the TD-error. In the 25% quartile transition, the algorithm assigns

41

6. Results and Discussion

(a) DQN + PER

(b) DQN (MICO) + BPERcn

(c) DQN (MICO) + BPERaa

Figure 6.5: Visual Inspection. Frames from the experience replay at the 90k time step,
corresponding to the main quartiles (min, 25%, 50%, 75%, and max) of priority values. Red
figures highlight different problematic transitions. The top row displays the current states, while
the bottom row shows the next states for each transition.

42

6. Results and Discussion

a low priority to a transition that reaches the goal, while assigning a high priority in
the 75% quartile to a transition where the agent is stuck in the same position without
reaching the goal, clearly resulting in low expected learning progress. In contrast, the
BPERcn and BPERaa strategies, show in Figures 6.5b, 6.5c, demonstrate consistency in
the lower quartiles by assigning lower priorities to transitions where the agent gets stuck
or moves backward relative to the goal, while maintaining higher priorities for transitions
that move towards the goal in the higher quartiles. However, the BPERcn method shows
small variances in the 25% quartile, where a lower priority is assigned to a transition that
leads towards the goal, suggesting occasional issues with assigning high priorities.
Refer to reference Appendix A.5 for a visual inspection at the 50k time step.

6.3 Outdated Priorities

This section aims to empirically demonstrate that the proposed method alleviates the
problem of outdated priorities. Recall that outdated priorities occur because priority
updates are performed only on the current minibatch, rather than across the whole possible
transition under the current policy.

Figures 6.6a and 6.6b show the distances between the sampling pi and ideal distribu-
tions p∗i averaged over 5 independent executions over time, using two weighting schemes,
the on-policy and uniform weighting, respectively. The PER method exhibits greater dis-
tances over time than the BPERcn and BPERaa strategies. Additionally, BPERcn and
BPERaa show less variability among executions. Although our method does not provides
distances close to zero (such as Pan et al.’s work [43]) indicating a perfect match between
distributions, our method reduce and alleviate the difference between the distributions
without relying on a model-based technique.

(a) On-policy Weighting (b) Uniform Weighting

Figure 6.6: Sampling Distributions Distances. Distance between the sampling pi and ideal
distributions p∗i averaged over 5 independent executions over time, using two weighting schemes,
(a) the on-policy and (b) uniform weighting.

43

6. Results and Discussion

6.4 State Space Coverage

This section aims to empirically evaluate that the proposed method addresses the state
space coverage problem. Recall the state space coverage problem arises from insufficient
exploration, where the experience replay only captures a limited number of possible states,
leading to suboptimal learning outcomes.

Figure 6.7 shows the state visitation distribution at the 90k time step in the 31-state
Grid World, where cell values corresponds to the visit count per state. The results indicate
that the strategies BPERcn and BPERaa visit more states more frequently compared to
other methods, with BPERcn performing slightly better than BPERaa. Additionally, the
DQN + MICO baseline outperforms DQN, and DQN + PER methods. While some of the
increased exploration in BPERcn and BPERaa may be attributed to the MICo learning,
the bisimulation prioritized technique further enhances exploration (relative to DQN +
MICo) by significantly increasing the state visit counts, reaching values around 600.

(a) DQN (b) DQN + MICO

(c) DQN + PER (d) DQN + MICO + BPERcn (e) DQN + MICO + BPERaa

Figure 6.7: Visitation Distributions. Illustrations showing the frequency of state visits in the
GridWorld, with most yellowish highlighting the most frequently visited states.

Figure 6.8 illustrates the visitation entropy calculated averaged over 5 independent runs
over time. The results clearly showcases that BPERaa outperforms the other methods with
a large and consistent entropy, while the BPERcn although initially performs efficiently
its performance decays around the time step 30k. PER method is the worse among all
the methods. The high entropy in BPERaa method indicates that visitation distributions

44

6. Results and Discussion

are more dispersed, consequently increasing the exploration consistently among different
runs.

Figure 6.8: Visitation Entropy. Visitation entropy performance averaged over 5 independent
runs over time, with shaded regions representing the variability for each method.

6.5 Classical Environments

Figure 6.9 illustrates the episode reward calculated over a moving average window of 100
episodes in four different environments: MountainCar-v0, LunarLander-v1, CartPole-v1,
and Acrobot-v1, averaged over 5 independent executions. The hyperparameter priority
weight µ was set using the best values found2. Please refer to Appendix A.7 for experiments
with prioritization weights 1.0 for Mountain Car and Cart Pole. Additionally, refer to
Appendix A.8 for validation episode reward results.

Figure 6.9a explores the episode reward in the Mountain Car environment, where the
bisimulation techniques, BPERcn and BPERaa, outperforms the other methods, with
considerable improvements over DQN + MICO baseline. It is important to note that the
priority weight is set to 0.1, meaning that most of the prioritization is influenced by the
TD-error. This suggests that the bisimulation distance may not be a useful indicator of
expected learning progress in this scenario, where the action space and rewards are limited.

Figure 6.9b shows the episode reward in the Lunar Lander environment. BPERcn
and BPERaa show initially the best performance over all the methods. However, over

2An exhaustive grid search was not conducted for the priority weight µ. Instead, the values were
determined using a trial-and-error approach, where it was observed that when bisimulation is less generally
useful due to the environment simplicity, it is better to set smaller values.

45

6. Results and Discussion

(a) MountainCar-v0 (b) LunarLander-v1

(c) CartPole-v1 (d) Acrobot-v1

Figure 6.9: Episode Reward in Classical Environments. Episode reward performance over
time, averaged with a moving window of 100 episodes across 5 independent executions, with shaded
regions representing the variability for each method. The values are calculated in four different
environments: (a) MountainCar-v0, (b) LunarLander-v1, (c) CartPole-v1, and (d) Acrobot-v1.

time, their performance decreases affecting even the learning of the DQN + MICO base-
line. Although both strategies outperforms the DQN and DQN + PER methods, the
observed benefits appear to derive more from the MICo learning than from the proposed
prioritization strategies [Disclaimer3].

Figure 6.9c shows the episode reward in the CartPole v1 environment. In this sce-
nario, the PER variant is more consistent and outperforms the other methods in most
cases. Although the BPERcn and BPERaa alternatives achieve improvements over the
direct baseline DQN + MICo, they do not surpass the performance of the DQN baseline.

3During our observations, BPERaa and BPERcn typically outperforms the direct baseline DQN +
MICo, even when DQN + MICo does not perform better than DQN. However, in this specific instance,
a different behavior was observed. Upon revisiting the code and hyperparameter settings, we found a
typo where the bisimulation priorities were incorrectly normalized using a logarithmic scale only for this
experiment, which could explain the observed issue. These results are provided for reference, but future
work should aim to redo this experiment to ensure accuracy.

46

6. Results and Discussion

Particularly, DQN + MICo performs worse than DQN, suggesting that in this environ-
ment, MICo learning does not provide a clear advantage. This may be due to the difficulty
in distinguishing between behaviorally similar or dissimilar states, given the simple reward
function (a reward of 1 for each time step) and the limited action space (two actions: left
and right). Consequently, it is expected that the BPERcn and BPERaa strategies under-
perform compared to the other methods.

Figure 6.9d shows the episode reward in the Acrobot-v1 environment. In this scenario,
BPERcn and BPERaa methods initially demonstrate better performance than the other
methods, and they eventually converge to a similar behavior as DQN and DQN + MICo.
In contrast, the PER method shows the worst performance over time; even worse than
the DQN baseline.

(a) MountainCar-v0 (b) LunarLander-v1

(c) CartPole-v1 (d) Acrobot-v1

Figure 6.10: Episode Reward Gain in Classical Environments. Episode reward gain
performance calculated against the DQN baseline over time, averaged with a moving window of 100
episodes across 5 independent executions. The values are calculated in four different environments:
(a) MountainCar-v0, (b) LunarLander-v1, (c) CartPole-v1, and (d) Acrobot-v1.

Figure 6.10 illustrates the episode reward gain relative to the DQN baseline for the
three prioritization extensions: PER, BPERcn, and BPERaa; measured using a moving
average window of 100 episodes. Mountain Car, Lunar Lander, and Acrobot-v1 results
show that the bisimulation strategies, BPERcn, and BPERaa, obtain mostly positive
episode reward gains over time compare to PER alternatives, confirming the findings
mentioned earlier. Notice, in Figure 6.10d, the slight improvements of the bisimulation
strategies over the baseline DQN are more clearly observed, which were not evident in the

47

6. Results and Discussion

episode reward plots. However, the CartPole-v1 results reveal a highly variable episode
reward gain for the BPERcn and BPERaa methods, with predominantly positive values
for the PER method over time. Please refer to Appendix A.9 for the evaluation relative
to the DQN + MICo baseline.

Table 6.1 summarizes the episode reward gains for each method and baseline, pre-
senting the mean and standard deviation over all time steps for each environment. The
BPERaa strategy shows the best performance on both the DQN and DQN + MICo base-
lines in the Acrobot and LunarLander environments, while BPERcn performs best on
Mountain Car, and the PER method is most effective on CartPole-v1. It is important
to note that the results are highly variable, especially in more complex environments like
LunarLander, where the standard deviations reach 185.015 and 191.315 for the DQN and
DQN + MICo baselines, respectively.

Baseline MountainCar-v0 Cartpole-v1 Acrobot-v1 LunarLander-v1

PER DQN 5.344± 21.016 10.975± 133.140 −3.279± 79.455 −65.620± 175.613
MICO 39.088± 39.151 24.23± 135.122 −6.878± 74.916 −107.075± 183.781

BPERcn DQN 10.145± 21.471 −2.100± 134.322 0.250± 78.057 18.800± 191.309
MICO 43.889± 38.863 11.648± 129.970 −3.350± 73.122 −22.654± 194.957

BPERaa DQN 9.021± 19.756 3.790± 134.959 2.915± 75.618 32.125± 185.015
MICO 42.765± 39.060 17.539± 134.593 −0.685± 70.853 −9.330± 191.315

Table 6.1: Episode Reward Gain Comparison of Different DQN Variants. The table
summarizes the episode reward gains for each method and baseline, presenting the mean and
standard deviation over all time steps for each environment. The best values per method and
baseline are highlighted in bold.

6.5.1 Mean Batch Priority

Figure 6.11 illustrates the log mean batch priority per method over time, averaged over
5 independent executions. A logarithmic scale was used to compare the methods because
bisimulation distances and TD-errors can vary by several orders of magnitude, and both
can reach large values over time. In all environments, the BPERcn and BPERaa methods
consistently exhibit higher average priority values compared to the PER method.

These results can be interpreted in two ways: (1) A high average priority value might
indicate efficient prioritization, where the sampled minibatches contain experiences with
high priority values, effectively increasing the average priority over time; (2) A high average
priority value could also suggest a saturated scenario, where only a few experiences are
highly prioritized, potentially reducing diversity in the data. According to the previous
results for episode reward in Figure 6.9, both interpretations seem relevant depending on
the environment. For example, in the LunarLander environment, although there is an
initial increase in episode reward using BPER strategies, performance eventually declines
to levels similar to DQN + MICo, suggesting that the algorithm is likely falling into the
second scenario. Conversely, results from Mountain Car, Acrobot, and CartPole indicate

48

6. Results and Discussion

sustained performance improvements over the DQN + MICo baseline, aligning with the
first scenario. Notice that this improvement over DQN + MICo is observed even with a
priority weight of 1.0 (refer to Appendix ??), where, although MICo learning does not
enhance DQN performance, the BPERaa and BPERcn methods still outperform DQN +
MICo.

(a) MountainCar-v0 (b) LunarLander-v1

(c) CartPole-v1 (d) Acrobot-v1

Figure 6.11: Log Mean Batch Priority. Priority calculated for each mini-batch sampled,
averaged across 5 independent executions. The results are presented on a logarithmic scale for
improved visualization.

6.6 Summary Discussion

The propose method yield superior performance on the 31-state GridWorld and promising
results in classical environments. On the one hand, the GridWorld experiments help to
empirically confirm our proof of concept by demonstrating the effectiveness and benefits
of our proposed bisimulation strategies, BPERcn and BPERaa, in addressing three key
problems: task-agnostic sampling, outdated priorities, and state space coverage.

• The episode reward and task-agnostic sampling results suggests that, although

49

6. Results and Discussion

the TD-error serves as an indicator of potential improvement in the Q-values, it is
insufficient as a proxy for expected learning progress in our GridWorld. In contrast,
a notion of behavioral similarity proves to be a better indicator of expected learning
progress.

• The outdated priorities results suggests that our proposal effectively alleviates
the problem of outdated priorities by reducing the distance between the ideal and
sampling probability distributions. Although the priorities are updated only in the
current minibatch, bisimulation distances provide a more stable priority over time
compared to TD-errors.

• The state space coverage results indicates that bisimulation strategies can encour-
age more exploration in the environment without explicitly instructing the policy to
explore more, as is done with ϵ-policies and other exploration mechanism [4, 27].

• Additionally, in most experiments, the BPERaa strategy outperforms BPERcn
by demonstrating a higher episode reward, greater variability in priority distribu-
tions, higher entropy for exploration, and fewer issues with priority assignment upon
visual inspection.

On the other hand, the performance in classical environments is only slightly better
and does not show consistent improvements compare to the DQN. However, what remains
consistent across experiments is that the bisimulation strategies outperform the direct
baseline DQN + MICo, even if they do not surpass DQN or DQN + PER. This result
suggest the following promising directions:

• The cases where our method does not outperform DQN or DQN + PER (e.g.,
CartPole and Mountain Car with a priority weight of 1.0) appear to be related to
scenarios where DQN + MICo is not efficient. When the MICo learning itself
is ineffective, it is expected that our approach would also yield suboptimal results.

• The effectiveness of MICo, and, consequently, our method is connected to the
structure of the evaluated environments. The MICO operator, as defined
in Definition 5, utilizes both the reward difference and the independent coupling
calculated over transitions. Consequently, the effectiveness of MICO learning is
inherently dependent on the structure of the environment, particularly the reward
structure and the transitions determined by the actions taken. In simpler classical
environments, the effective state space is smaller with few transitions and the same
rewards per time step, making it more challenging to identify behaviorally similar
states for MICo learning. In fact, results in simple Atari environments (e.g., Pong)
from MICO reported by Castro et al. [10] do not show evident improvements.

• The mean batch priority is a viable indicator for analyzing the level of prioriti-
zation in each environment, showing that our proposal consistently encourage large
priority values within the current mini batch. However, the results have different

50

6. Results and Discussion

interpretations, which must be interpreted alongside the episode reward results to
determine whether a high mean batch priority is having a positive impact or not.

51

CHAPTER 7

Conclusion and Future Work

7.1 Conclusion

This work present a non-uniform sampling technique to sample transitions from an ex-
perience replay, named Bisimulation Prioritized Experience Replay (BPER) along with
two strategies: current-vs-next (BPERcn) and all-vs-all (BPERaa). The priorities are
assigned based on a surrogate on-policy bisimulation, called MICo metric, that is used
to encourage sampling transitions with more behavioral dissimilar states (promoting data
diversity). The MICo metric is estimated as part of the learning of state abstractions. The
proposed technique demonstrates strong performance in a GridWorld environment used to
validate the effectiveness of the method, and promising results in classical environments.

In the GridWorld experiments, the results indicate that the BPERcn and BPERaa
strategies effectively address three key sampling challenges: task-agnostic sampling, out-
dated priorities, and state space coverage. Both visual and quantitative analyses show
that our approach outperforms all other evaluated methods (DQN, DQN + PER, and
DQN + MICO) in each of these areas, demonstrating the viability of our method.

In slightly more complex environment, however, the proposed approach is partially
effective, consistently outperforming the direct baseline DQN + MICo, but outperforming
DQN and DQN + PER only in special cases.

The method offers a potentially valuable approach for future applications, but its suc-
cessful implementation will require careful consideration of certain factors. These include
the structure of the environment, such as the reward function, the action space, and the
transitions. Further research is needed to explore these aspects in depth and to refine the
method for broader applicability.

52

7. Conclusion and Future Work

7.2 Future Work

We present the following future directions for the current work:

• Complex Environment to Evaluate. The impact of MICO learning (inherently
influenced by the structure of the environment as defineds in Definition 5) becomes
more evident in complex environments with a greater variety of actions and rewards.
In this project, we tested the method only on relatively simple environments with
limited actions and rewards, which made it complicated to fully discern its effective-
ness. We recommend to explore more complex environments in future works.

• Heavily Skewed Sampling Distributions. The bisimulation values are signifi-
cantly higher compared to the TD-errors (see Figure 6.11). Although high priority
values in a minibatch can be associated with positive effects, consistently assigning
excessively large values is not ideal, as it may lead to uneven and heavily skewed prob-
ability distributions that disproportionately weight certain experiences over others.
A potential solution to mitigate this issue could involve using normalization tech-
niques1 or clipping techniques before assigning priorities. Additionally, alternative
sampling methods, such as temperature-based sampling (commonly used in large
language models [24]) or rank-based sampling [44], could be explored.

• Lack of Theoretical Guarantees. This work provides an empirical evaluation of
the proposed method; however, it does not include a theoretical proof that guarantees
the algorithm’s convergence. Future work should explore developing a formal proof
to establish such guarantees. We suggest following approaches similar to those in
Pan et al. [43], which provided a formal proof for the convergence of PER.

• Prioritization Hyper-parameter Adjustments. In the evaluated experiments,
the best alpha α and beta β hyperparameters, which control the prioritization level
(α-probability) and the weighted importance sampling for the PER [44] method, were
used. However, although these hyperparameters are optimal for the PER method,
they may not necessarily be the best for our approach. We recommend to conduct
a hyperparameter sweep to find the adequate setting for our method.

• Benchmarks and Algorithms. Similar to MICO learning [10], our method can be
integrated into any value-based agent, adapted to different algorithms that employs
an experience replay as part of the learning, such as Double DQN [50], DDPG [33],
and SAC [21]. Additionally, in this work, we have only tested our approach in
classical environments without considering other relevant benchmarks, such as Atari
[8, 38] or MuJoCo [49] bechmarks. Future work should explore the performance of
our method with these state-of-the-art algorithms and benchmarks.

1We conducted experiments using a logarithmic and min-max scaling not yielding satisfactory results.

53

Bibliography

[1] A. Abate, M. Giacobbe, and Y. Schnitzer. Bisimulation learning. arXiv preprint
arXiv:2405.15723, 2024. 13

[2] D. Abel. A theory of abstraction in reinforcement learning. arXiv preprint
arXiv:2203.00397, 2022. 21

[3] J. Achiam. Spinning Up in Deep Reinforcement Learning. 2018. 8

[4] S. Amin, M. Gomrokchi, H. Satija, H. Van Hoof, and D. Precup. A survey of ex-
ploration methods in reinforcement learning. arXiv preprint arXiv:2109.00157, 2021.
50

[5] A. Anand, E. Racah, S. Ozair, Y. Bengio, M.-A. Côté, and R. D. Hjelm. Unsupervised
state representation learning in atari. Advances in neural information processing
systems, 32, 2019. 22

[6] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew,
J. Tobin, O. Pieter Abbeel, and W. Zaremba. Hindsight experience replay. Advances
in neural information processing systems, 30, 2017. 18

[7] C. Baier and J.-P. Katoen. Principles of model checking. MIT press, 2008. 13

[8] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013. 53

[9] P. S. Castro. Scalable methods for computing state similarity in deterministic markov
decision processes. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 10069–10076, 2020. 2, 14, 15, 16, 27, 32, 35

[10] P. S. Castro, T. Kastner, P. Panangaden, and M. Rowland. Mico: Improved represen-
tations via sampling-based state similarity for markov decision processes. Advances

54

7. BIBLIOGRAPHY

in Neural Information Processing Systems, 34:30113–30126, 2021. 2, 3, 12, 16, 17, 21,
23, 29, 50, 53, 59

[11] P. S. Castro, T. Kastner, P. Panangaden, and M. Rowland. A kernel perspective on
behavioural metrics for markov decision processes. arXiv preprint arXiv:2310.19804,
2023. 23

[12] Z. Chen, H. Li, and R. Wang. Attention loss adjusted prioritized experience replay.
arXiv preprint arXiv:2309.06684, 2023. 2

[13] T. Dai, H. Liu, K. Arulkumaran, G. Ren, and A. A. Bharath. Diversity-based tra-
jectory and goal selection with hindsight experience replay. In PRICAI 2021: Trends
in Artificial Intelligence: 18th Pacific Rim International Conference on Artificial In-
telligence, PRICAI 2021, Hanoi, Vietnam, November 8–12, 2021, Proceedings, Part
III 18, pages 32–45. Springer, 2021. 18, 19

[14] T. De Bruin, J. Kober, K. Tuyls, and R. Babuška. Experience selection in deep
reinforcement learning for control. Journal of Machine Learning Research, 19(9):1–
56, 2018. 18

[15] W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle, M. Rowland, and
W. Dabney. Revisiting fundamentals of experience replay. In International Conference
on Machine Learning, pages 3061–3071. PMLR, 2020. 2, 18, 19, 32

[16] N. Ferns, P. Panangaden, and D. Precup. Metrics for finite markov decision processes.
In UAI, volume 4, pages 162–169, 2004. 2, 14

[17] N. Ferns, P. Panangaden, and D. Precup. Bisimulation metrics for continuous markov
decision processes. SIAM Journal on Computing, 40(6):1662–1714, 2011. 2, 14

[18] N. Ferns and D. Precup. Bisimulation metrics are optimal value functions. In UAI,
pages 210–219, 2014. 2, 14

[19] R. Givan, T. Dean, and M. Greig. Equivalence notions and model minimization in
markov decision processes. Artificial Intelligence, 147(1-2):163–223, 2003. 13

[20] D. Ha and J. Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.
21

[21] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018. 1, 53

[22] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson.
Learning latent dynamics for planning from pixels. In International conference on
machine learning, pages 2555–2565. PMLR, 2019. 21

55

7. BIBLIOGRAPHY

[23] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Hor-
gan, B. Piot, M. Azar, and D. Silver. Rainbow: Combining improvements in deep
reinforcement learning. In Proceedings of the AAAI conference on artificial intelli-
gence, volume 32, 2018. 18, 19

[24] D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics, and Speech Recognition
with Language Models. 3rd edition, 2024. Online manuscript released August 20,
2024. 53

[25] L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell, K. Czechowski,
D. Erhan, C. Finn, P. Kozakowski, S. Levine, et al. Model-based reinforcement
learning for atari. arXiv preprint arXiv:1903.00374, 2019. 21

[26] A. Kumar, A. Gupta, and S. Levine. Discor: Corrective feedback in reinforcement
learning via distribution correction. Advances in Neural Information Processing Sys-
tems, 33:18560–18572, 2020. 19

[27] P. Ladosz, L. Weng, M. Kim, and H. Oh. Exploration in deep reinforcement learning:
A survey. Information Fusion, 85:1–22, 2022. 50

[28] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. Building machines
that learn and think like people. Behavioral and brain sciences, 40:e253, 2017. 21

[29] M. Laskin, A. Srinivas, and P. Abbeel. Curl: Contrastive unsupervised representations
for reinforcement learning. In International conference on machine learning, pages
5639–5650. PMLR, 2020. 21, 22

[30] K. Lee, M. Laskin, A. Srinivas, and P. Abbeel. Sunrise: A simple unified framework
for ensemble learning in deep reinforcement learning. In International Conference on
Machine Learning, pages 6131–6141. PMLR, 2021. 20

[31] S. Y. Lee, C. Sungik, and S.-Y. Chung. Sample-efficient deep reinforcement learning
via episodic backward update. Advances in neural information processing systems,
32, 2019. 19

[32] L. Li, T. J. Walsh, and M. L. Littman. Towards a unified theory of state abstraction
for mdps. AI&M, 1(2):3, 2006. 13

[33] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015. 1, 53

[34] T. Lindvall. Lectures on the coupling method. Courier Corporation, 2002. 15

[35] J. Liu, Y. Ma, J. Hao, Y. Hu, Y. Zheng, T. Lv, and C. Fan. Prioritized trajectory
replay: A replay memory for data-driven reinforcement learning. arXiv preprint
arXiv:2306.15503, 2023. 18, 19

56

7. BIBLIOGRAPHY

[36] X.-H. Liu, Z. Xue, J. Pang, S. Jiang, F. Xu, and Y. Yu. Regret minimization ex-
perience replay in off-policy reinforcement learning. Advances in Neural Information
Processing Systems, 34:17604–17615, 2021. 19, 20

[37] S. Lukaszyk. A new concept of probability metric and its applications in approxima-
tion of scattered data sets. Computational mechanics, 33:299–304, 2004. 17

[38] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. Hausknecht, and M. Bowl-
ing. Revisiting the arcade learning environment: Evaluation protocols and open prob-
lems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.
53

[39] A. R. Mahmood, H. P. Van Hasselt, and R. S. Sutton. Weighted importance sam-
pling for off-policy learning with linear function approximation. Advances in neural
information processing systems, 27, 2014. 11

[40] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013. 1, 8, 10, 37

[41] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level con-
trol through deep reinforcement learning. nature, 518(7540):529–533, 2015. 8, 10

[42] A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive pre-
dictive coding. arXiv preprint arXiv:1807.03748, 2018. 22

[43] Y. Pan, J. Mei, A.-m. Farahmand, M. White, H. Yao, M. Rohani, and J. Luo. Un-
derstanding and mitigating the limitations of prioritized experience replay. In Uncer-
tainty in Artificial Intelligence, pages 1561–1571. PMLR, 2022. 2, 20, 32, 35, 36, 43,
53, 61

[44] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015. 1, 2, 11, 12, 18, 32, 53

[45] S. Sinha, J. Song, A. Garg, and S. Ermon. Experience replay with likelihood-free
importance weights. In Learning for Dynamics and Control Conference, pages 110–
123. PMLR, 2022. 20

[46] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine
learning, 3:9–44, 1988. 15, 18, 19

[47] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,
2018. 1, 2, 5, 9, 15, 18, 19, 26

[48] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Ab-
dolmaleki, J. Merel, A. Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018. 21

57

7. BIBLIOGRAPHY

[49] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012. 53

[50] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30,
2016. 53

[51] C. Villani et al. Optimal transport: old and new, volume 338. Springer, 2009. 15

[52] D. Zha, K.-H. Lai, K. Zhou, and X. Hu. Experience replay optimization. arXiv
preprint arXiv:1906.08387, 2019. 20

[53] A. Zhang, R. McAllister, R. Calandra, Y. Gal, and S. Levine. Learning invariant
representations for reinforcement learning without reconstruction. arXiv preprint
arXiv:2006.10742, 2020. 2, 3, 16, 22, 23, 29

[54] R. Zhao and V. Tresp. Curiosity-driven experience prioritization via density estima-
tion. arXiv preprint arXiv:1902.08039, 2019. 20

58

APPENDIX A

Appendices

A.1 Metrics

The following information was retrieved from the Supplementary Material provide by
Castro et al. [10].

A metric d on a set X is a function d : X × X → [0,∞) respecting the following
axioms for any x, y, z ∈ X:

1. Identity of indiscernibles: d(x, y) = 0 ⇐⇒ x = y;

2. Symmetry: d(x, y) = d(y, x);

3. Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

A pseudometric is similar, but the ”identity of indiscernibles” axiom is weakened:

1. x = y =⇒ d(x, y) = 0;

2. d(x, y) = d(y, x);

3. d(x, y) ≤ d(x, z) + d(z, y).

Note that the weakened first condition does allow one to have d(x, y) = 0 when x ̸= y.
A (pseudo)metric space (X, d) is defined as a set X together with a (pseudo)metric

d defined on X.
A diffuse metric is similar to as pseudometri, but the ’identity of indiscernibles’

axiom is weakened even more:

1. d(x, y) ≥ 0 for any x, y ∈ X;

59

A. Appendices

2. d(x, y) = d(y, x);

3. d(x, y) ≤ d(x, z) + d(z, y).

Note that the weakened first condition does allow one to have self-distance greater
than zero d(x, x) > 0.

A.2 Algorithm: DQN with Matching under Independent
Couplings (MICo)

Algorithm 4 DQN with Matching under Independent Couplings (MICo)

1: Input: minibatch k, step-size η, replay period K and size N , budget T (total steps).
2: Initialize action-value function Q with random weights ξ, ω
3: Initialize target action-value function Q− with weights {ξ̄, ω̄} ← {ξ, ω}
4: Initialize replay memory D = ∅ with capacity N
5: for t = 1 to T do
6: Observe st
7: Choose action at ∼ πϵθ(st)
8: Execute action at and observe rt and st+1

9: Store transition (st, at, rt, st+1) in D
10: if t ≡ 0 mod K then
11: Sample minibatch B ∼ Uniform(D) of transitions ej

12: Set yj =

{
rj for terminal sj+1

rj + γmaxa′ Q
−(sj+1, a

′; {ξ̄, ω̄}) otherwise

13: Compute TD-error δj = yj −Q(sj , aj ; {ξ, ω}), and loss LTD = δ2j
14: Squarify minibatch B to get transition pairs ⟨x, rx, x′⟩ , ⟨y, ry, y′⟩
15: Compute MICo loss LMICo =

(
TUω̄ (rx, x

′, ry, y
′)− Uω(x, y)

)2
16: Compute total loss Lα(ξ, ω) = (1− α)LTD(ξ, ω) + αLMICo(ω)
17: Perform a gradient descent step on Lα(ξ, ω)
18: Every C optimizing steps update {ξ̄, ω̄} ← {ξ, ω}
19: end if
20: end for

60

A. Appendices

A.3 Distance between Priority Sampling Distributions

The following explanation is based on the Supplementary Materials from Pan et al. [43].
The distance between the ideal priority distribution p∗i (·) and the sampling priority dis-
tribution p∗i (·) is estimated by the following three steps:

1. In order to compute the ideal sampling distribution, we use the implicit discrete
state space (not raw pixels) from the Grid World, and

• In the DQN + PER experiment, we calculate the absolute TD error of each
state (coordinates x, y) by using the true environment model and the current
learned Q{ξ,ω} network.

• In the DQN + MICO + PER experiment, we calculate the mico distance of
each state (coordinates x, y) by using the true environement model and the
current learned ϕω encoder

We then normalize these priorities to get probability distribution p∗i with i = 1 for
DQN + PER and i = 2 for DQN + MICO + PER. Note that this distribution is
considered as the desired one since we have access to all states across the state space
with priorities computed by current network at each time step.

2. The sampling distribution is estimated by randomly sampling 3k states and count
the number of states and normalize these counts to get pi, with i = 1 for DQN +
PER and i = 2 for DQN + MICO + PER.

3. Finally, the distances of p1, p2 to p∗1, p
∗
2 by two weighting schemes:

(a) on-policy weighting:

2500∑
j=1

dπ(sj)|pi(sj)− p∗i (sj)|, i ∈ {1, 2},

where dπ is approximated by uniformly sampling 3k states from a recent buffer
and normalizing their visitation counts on the GridWorld;

(b) uniform weighting:

1

2500

2500∑
j=1

|pi(sj)− p∗i (sj)|, i ∈ {1, 2}.

Two weighting schemes were employed for two different purposes: on-policy weight-
ing focuses on the asymptotic convergence behavior, thereby reducing the weight of states
with relatively high TD errors that are rarely visited as the policy approaches optimality.
In contrast, uniform weighting is more appropriate during the initial learning phase,
where all states are considered equally important, encouraging the agents to thoroughly
explore the entire state space.

61

A. Appendices

A.4 Hyperparameters Setting

Hyperparameter DQN DQN PER DQN MICo DQN BPER

Collector

Total Budget 100,000 100,000 100,000 100,000
Replay Period 128 128 128 128

Eps Start 0.1 0.1 0.1 0.1
Eps End 0.005 0.005 0.005 0.005

Eps Annealing Frames 520,000 520,000 520,000 520,000
Init Random Frames 200 200 200 200

Frame Stack 1 1 1 1
Frame Skip 1 1 1 1

Policy

CNN Net (Cells) [32, 64, 64] [32, 64, 64] [32, 64, 64] [32, 64, 64]
Kernel Sizes [8, 4, 3] [8, 4, 3] [8, 4, 3] [8, 4, 3]

Strides [4, 2, 1] [4, 2, 1] [4, 2, 1] [4, 2, 1]
MLP Net (Cells) [64, 64] [64, 64] [64, 64] [64, 64]

Activation ReLU ReLU ReLU ReLU

Buffer

Buffer Size 100,000 100,000 100,000 100,000
Batch Size 256 256 256 256

Alpha – 0.6 – 0.6
Beta – 0.4 – 0.4

Priority Weight – – 1.0 1.0

Optim

Learning Rate 0.0015 0.0015 0.0015 0.0015
Max Grad Norm 10 10 10 10

Weight Decay 0.00001 0.00001 0.00001 0.00001
Eps 1.5e-4 1.5e-4 1.5e-4 1.5e-4

Loss

Gamma 0.99 0.99 0.99 0.99
MICO Weight – – 0.01 0.01
MICO Beta – – 0.1 0.1

MICO Gamma – – 0.99 0.99
Hard Update Freq 50 50 50 50

Num Updates 1 1 1 1

Table A.1: Hyperparameter Configurations for Grid World. This configuration was con-
sistently used across different independent runs. The settings for DQN BPER are applicable to
both BPERcn and BPERaa.

62

A. Appendices

Hyperparameter DQN DQN PER DQN MICo DQN BPER

Collector

Total Budget 1,000,064 1,000,064 1,000,064 1,000,064
Replay Period 128 128 128 128

Eps Start 0.5 0.5 0.5 0.5
Eps End 0.005 0.005 0.005 0.005

Eps Annealing Frames 520,000 520,000 520,000 520,000
Init Random Frames 20,000 20,000 20,000 20,000

Frame Stack 4 4 4 4
Frame Skip 4 4 4 4

Policy

CNN Net (Cells) [32, 64, 64] [32, 64, 64] [32, 64, 64] [32, 64, 64]
Kernel Sizes [8, 4, 3] [8, 4, 3] [8, 4, 3] [8, 4, 3]

Strides [4, 2, 1] [4, 2, 1] [4, 2, 1] [4, 2, 1]
MLP Net (Cells) [64, 64] [64, 64] [64, 64] [64, 64]

Activation ReLU ReLU ReLU ReLU

Buffer

Buffer Size 100,000 100,000 100,000 100,000
Batch Size 256 256 256 256

Alpha – 0.6 – 0.6
Beta – 0.4 – 0.4

Priority Weight – – 1.0 1.0

Optim

Learning Rate 0.0015 0.0015 0.0015 0.0015
Max Grad Norm 10 10 10 10

Weight Decay 0.00001 0.00001 0.00001 0.00001
Eps 1.5e-4 1.5e-4 1.5e-4 1.5e-4

Loss

Gamma 0.99 0.99 0.99 0.99
MICO Weight – – 0.01 0.01
MICO Beta – – 0.1 0.1

MICO Gamma – – 0.99 0.99
Hard Update Freq 50 50 50 50

Num Updates 1 1 1 1

Table A.2: Hyperparameter Configurations for Other Environments. This configuration
was consistently applied across the MountainCar, CartPole, Acrobot, and LunarLander environ-
ments for each independent run. The settings for DQN BPER are applicable to both BPERcn and
BPERaa. The priority weight configuration was adjusted as described in the results.

63

A. Appendices

(a) DQN + PER

(b) DQN (MICO) + BPERcn

(c) DQN (MICO) + BPERaa

Figure A.1: Visual Inspection at the 50k time step. Frames corresponding to the main
quartiles (min, 25%, 50%, 75% and max) of priority values in the experience replay collected at the
50k time step, highlighting different problematic transitions with red colour. The top row shows
the current states, and the bottom row shows the next states for each transition.

64

A. Appendices

A.5 Visual Inspection 50k Time Step

A.6 Priority Weight Sweep Results

(a) Sweep BPERcn (b) Sweep BPERcn

Figure A.2: Priority Weight Sweep in Grid World. Episode reward sweep over prior-
ity weights with values 0.1, 0.25, 0.5, 0.75, and 1.0, averaged with a moving window of 100
episodes across 5 independent executions over time. Shaded regions represent the variability for
each method. The values are calculated for (a) the current-next strategy (BPERcn) and (b) the
all-vs-all strategy (BPERaa).

A.7 Mountain Car and CartPole with Priority Weight 1.0

(a) Mountain Car (b) CartPole

Figure A.3: Episode Reward in Classical Environments using Priority Weight 1.0
Episode reward performance over time, averaged with a moving window of 100 episodes across 5
independent executions, with shaded regions representing the variability for each method. The
values are calculated in four different environments: (a) MountainCar-v0, (b) LunarLander-v1, (c)
CartPole-v1, and (d) Acrobot-v1.

65

A. Appendices

A.8 Validation Episode Reward

(a) MountainCar-v0 (b) LunarLander-v1

(c) CartPole-v1 (d) Acrobot-v1

Figure A.4: Validation Episode Reward in Classical Environments. Validation episode
reward performance over time, averaged with a moving window of 100 episodes across 5 independent
executions, with shaded regions representing the variability for each method. The values are
calculated in four different environments: (a) MountainCar-v0, (b) LunarLander-v1, (c) CartPole-
v1, and (d) Acrobot-v1.

66

A. Appendices

A.9 Episode Reward Gain baseline DQN + MICO

(a) MountainCar-v0 (b) LunarLander-v1

(c) CartPole-v1 (d) Acrobot-v1

Figure A.5: Episode Reward Gain in Classical Environments against DQN MICO
baseline. Episode reward gain performance calculated against the DQN + MICO baseline over
time, averaged with a moving window of 100 episodes across 5 independent executions. The
values are calculated in four different environments: (a) MountainCar-v0, (b) LunarLander-v1, (c)
CartPole-v1, and (d) Acrobot-v1.

67

